Nav: Home

Study finds human hearts evolved for endurance

September 16, 2019

BOSTON -Major physical changes occurred in the human heart as people shifted from hunting and foraging to farming and modern life. As a result, human hearts are now less "ape-like" and better suited to endurance types of activity. But that also means those who lead sedentary lives are at greater risk for heart disease. Those are the main conclusions from a unique study led by Aaron L. Baggish, MD, director of the Massachusetts General Hospital (MGH) Cardiovascular Performance Program. Baggish and his collaborators examined how ape hearts differ from those of humans, why those differences exist and what that means to human health.

They measured and compared heart function in apes and four groups of humans (ranging from sedentary through to elite runners, and including indigenous subsistence farmers). Their research is presented in the Sept. 2019 issue of Proceedings of the National Academy of Sciences of the United States of America (PNAS). Baggish's collaborators on this paper included Robert E. Shave, PhD, School of Health and Exercise Sciences, University of British Columbia; and Daniel E. Lieberman, PhD, Department of Human Evolutionary Biology, Harvard University.

Chimpanzees are humans' closest known relatives, based on genetics and evolutionary studies. There are, of course, some stark differences between these species. For example, in terms of exertion, chimpanzees mainly engage in short bursts of activity, such as climbing and fighting, which put intense pressure on the heart but only for a limited time. In contrast, it's believed that, up until the industrial revolution, humans were active for longer bouts of time in order to hunt and farm. Survival of pre-industrial humans, it is thought, depended on moderate-intensity, endurance-like activity (e.g. hunting, gathering, and then farming).

It is also well established that some physical features of the heart change in response to certain physical challenges. Walking and running, for example, require more blood to be pumped to deliver fuel to active muscles. In contrast, brief but intense exertion from activities such as climbing or fighting, create pressure in heart, which over time can makes the heart chambers develop stiffer and thicker walls.

"The heart remodels in response to two main forces: pressure and volume," says Baggish. As a result, "Humans have longer, thinner- and more flexible-walled hearts, while chimps have smaller hearts with thicker walls." What Baggish and his collaborators wanted to know was: Could those differences have evolved in response to humans' new activity levels? And if so, what implications does that have on human health today?

Using a group of more than 160 study participants, the researchers carried out detailed heart function studies, including measuring blood pressure and using ultrasound to examine the heart's structure and function during many different activities. Their subjects were fairly evenly divided into elite runners, American football players, indigenous Mexican subsistence farmers and people who engage in little physical activity. They made similar measurements in about 40 semi-wild chimpanzees and five gorillas.

"The goal was to compare heart structure and function in each "type" - whether the subject was very active, to barely active," Baggish says. In addition, the investigators sought to determine if adaptation to either pressure or volume comes at the expense of the ability to handle the alternative form of stress. This was done by giving pressure adapted (football linemen) and volume adapted (long distance runners) both a "volume challenge," by giving them a large intravenous saline infusion and a "pressure challenge," by sustained, forceful handgrip, and simultaneously measuring heart function. The goal was to see if there is a tradeoff between having a heart that is adapted for endurance versus having one that performs better for short bursts of intense activity. Or could the heart adapt for both?

Baggish and his collaborators found that indeed, human hearts appear to have evolved to be better at handling endurance type activity, as opposed to short intense bouts. The researchers also confirmed that people who train specifically for endurance sports have hearts with longer, larger, and more elastic left ventricles, which is the part of the heart that pumps the blood out to the body. Those features, and others, make the heart better able to cope with pumping higher volumes of blood over a sustained time. In contrast, sedentary people, even at a relatively young age, have hearts that appear more "ape-like" that are better suited to cope with short bursts of high activity.

These findings help answer that question about the heart's evolution. "The human heart has evolved over hundreds of thousands of years as our activity levels gradually became more sustained," Baggish says. "We now understand that the human heart, coupled with changes in the musculoskeletal and thermoregulatory system, evolved to facilitate extended endurance activity rather than spurts of intense exertion." This study has important implications for understanding heart health today. For example, people who live a sedentary lifestyle appear to develop more ape-like hearts and are more prone to hypertension. That disease process then causes further changes and a negative feedback loop that raises risk of disease.

This study was unique for several reasons, Baggish says. "Not only were we able to study heart function in three types of primates, but we also had the opportunity to work with people who are among the last groups of truly subsistence-based farmers, the Tarahumara in Mexico's Copper Canyons." The research team also included a cardiologist (Baggish), an expert in exercise physiology (Shave) and an evolutionary biologist (Lieberman).
-end-
About the Massachusetts General Hospital

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $925 million and comprises more than 8,500 researchers working across more than 30 institutes, centers and departments. In August 2019 the MGH was once again named #2 in the nation by U.S. News & World Report in its list of "America's Best Hospitals."

Massachusetts General Hospital

Related Endurance Articles:

Examining enlargement of the aorta among older endurance athletes
Researchers in this observational study evaluated dimensions of the aorta in 442 older competitive runners and rowers (ages 50 to 75) to examine the association between long-term endurance exercise and enlargement of the artery.
Study finds long-term endurance exercise is associated with enlarged aorta
Study finds high percentage of long term endurance athletes had aortas larger than the upper limit of clinical normality.
Tart cherry juice concentrate found to help improve endurance exercise performance
Montmorency tart cherry juice has gained a reputation as a recovery drink among elite and recreational exercisers, with research suggesting benefits for reducing strength loss and improving muscle recovery after intensive exercise.
Concrete with improved impact endurance for defense structures developed at FEFU
Engineers from the Military Studies Center at Far Eastern Federal University (MSC FEFU) developed a brand-new concrete with improved impact endurance and up to 40% made of waste: rice husk cinder, limestone crushing waste, and siliceous sand.
Study finds human hearts evolved for endurance
Major physical changes occurred in the human heart as people shifted from hunting and foraging to farming and modern life.
Taking evolution to heart
An international research group at UBC, Harvard University and Cardiff Metropolitan University has discovered how the human heart has adapted to support endurance physical activities.
Aerobic exercise programs may improve endurance, walking after stroke
Stroke survivors who completed a group-based aerobic exercise program, like cardiac rehabilitation, significantly improved their endurance and walking capacity regardless of time since stroke.
One or the other: Why strength training might come at the expense of endurance muscles
The neurotransmitter brain-derived neurotrophic factor (BDNF) acts in the muscle, so that during strength training endurance muscle fiber number is decreased.
Researchers from IKBFU discover that pine nut shells increase physical endurance
For several decades, the number of chronicle diseases has been growing.
Is there a limit to human endurance? Science says yes
From the Ironman to the Tour de France, some competitions test even the toughest endurance athletes.
More Endurance News and Endurance Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.