Nav: Home

New method reveals how damage occurs in human biological cells due to mechanical fatigue

September 16, 2019

Human red blood cells (RBCs) are extremely resilient and have the capacity to undergo cellular deformation as they navigate across various micro-vessels and capillaries. Over their 120-day normal lifespan, RBCs must undergo significant cyclic deformation through large elastic stretching and relaxation. Pathological deformations in RBCs are associated with various diseases such as malaria, sickle cell anemia, diabetes, myocardial infarction and various hereditary disorders.

Mechanical fatigue that arises from cyclic straining in RBCs also is a key factor in the degradation of engineered materials and structures. This fatigue can damage and fracture natural biomaterials like bone as well as synthetic biomaterials used in implant devices such as dental implants and synthetic heart valves. However, the mechanisms responsible for the degradation of circulating biological cells due to mechanical fatigue are not well-understood, especially in human RBCs. Measuring the complex and clinically relevant mechanical fatigue behavior of biological cells in health and disease has challenged scientists for decades.

Researchers from Florida Atlantic University's College of Engineering and Computer Science, in collaboration with Massachusetts Institute of Technology, and the Nanyang Technological University in Singapore, have developed a novel way to measure how mechanical fatigue affects biological cells. Furthermore, they have established the important role of this effect in influencing physical properties of biological cells such as RBCs.

Results of the study, published in the Proceedings of the National Academy of Sciences, also provide insights into the accumulated membrane damage during blood circulation, paving the way for further investigations of the eventual failure of RBCs and the mechanism that causes their destruction in various blood disorder pathologies such as sickle cell anemia.

This new technique assesses the mechanical integrity and fatigue behavior of RBCs using a general microfluidics method that incorporates amplitude-modulated electro-deformation. It induces static and cyclic mechanical deformation of RBCs and measures systematic changes in morphological and biomechanical characteristics of healthy human RBCs and their membrane mechanical properties. This method also is capable of subjecting cells to static loads for prolonged periods of time or to large numbers of controlled mechanical fatigue cycles.

"The fatigue testing platform that we have developed features multiple and distinctive advantages for the quantitative characterization of mechanical fatigue behavior of single biological cells," said Sarah Du, Ph.D., a senior author and an associate professor in FAU's Department of Ocean and Mechanical Engineering. "The strengths of our method lie in its simplicity and flexibility to impose controlled mechanical loads at selected frequencies and waveforms, and its capability to probe a number of single cells over thousands of fatigue cycles."

The researchers wanted to better understand the effect of fluctuations in stresses or deformation of a healthy biological cell on its mechanical and physical characteristics, structural integrity and performance. They also wanted to identify the function of factors such as the maximum intensity, amplitude and rate of strain, frequency of cyclic deformation, and number of cycles as well as whether or not this effect is specific to cyclic variations in deformation.

Results from the study further indicate that loss of deformability of RBCs during cyclic deformation is much faster than that under static deformation at same maximum load over same accumulated loading time. Such fatigue-induced deformability loss is more pronounced at higher amplitudes of cyclic deformation.

"This cutting-edge technique developed by Professor Du and her group will be a game changer, which will help scientists to better understand the biological functions of red blood cells and other cells that impact many aspects of human health," said Stella Batalama, Ph.D., dean of FAU's College of Engineering and Computer Science. "In addition, this unique method has important applications for mechanical fatigue studies in conjunction with other microenvironments related to health and materials engineering."
-end-
The lead author of the study, Yuhao Qiang, and co-author Jiu Liu, are Ph.D. research assistants in FAU's Department of Ocean and Mechanical Engineering; Ming Dao, Ph.D., Massachusetts Institute of Technology and Subra Suresh, Ph.D., Nanyang Technological University also are two senior authors of the study.

This research was supported by the National Science Foundation (No. 1635312 and No. 1464102) awarded to Du, the National Institutes of Health (U01HL114476) awarded to Dao, and a Distinguished University Professorship from Nanyang Technological University in Singapore, awarded to Suresh.

About FAU's College of Engineering and Computer Science: Florida Atlantic University's College of Engineering and Computer Science is committed to providing accessible and responsive programs of education and research recognized nationally for their high quality. Course offerings are presented on-campus, off-campus, and through distance learning in bioengineering, civil engineering, computer engineering, computer science, electrical engineering, environmental engineering, geomatics engineering, mechanical engineering and ocean engineering. For more information about the college, please visit eng.fau.edu.

About Florida Atlantic University: Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University, with an annual economic impact of $6.3 billion, serves more than 30,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida. FAU's world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of critical areas that form the basis of its strategic plan: Healthy aging, biotech, coastal and marine issues, neuroscience, regenerative medicine, informatics, lifespan and the environment. These areas provide opportunities for faculty and students to build upon FAU's existing strengths in research and scholarship. For more information, visit fau.edu.

Florida Atlantic University

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.