Sunfleck use research needs appropriate experimental leaves

September 16, 2020

"All the roads of learning begin in the darkness and go out into the light."

This quote is often attributed to Hippocrates and exhibits a double level of relevance in photosynthesis research. The use of light by plant leaves to drive photosynthesis is often studied in steady state environments, but most plant leaves are required to adjust to fluctuations in incident light every day. The research into use of fluctuating light by plant leaves has expanded in recent decades. A study from the Western Pacific Tropical Research Center at the University of Guam has shown that accurate results in this subdiscipline of plant physiology can only be obtained when methods employ leaves that were grown in fluctuating light prior to experimental methods. The results have been published in a recent issue of the journal Plants (doi: 10.3390/plants9070905).

The experimental results confirmed that leaves which were constructed under homogeneous shade such as commercial shade fabric did not respond to fluctuating light in a manner that was similar to leaves which were constructed under fluctuating light. To expand the applicability of the results, three model species were employed for this study. Soybean represented eudicot angiosperms, corn represented monocot angiosperms, and the native cycad species in Guam represented gymnosperms.

The experimental approach called on traditional response variables to ensure applicability of the results to the established literature. One response variable was the speed of increase in photosynthesis when a leaf that is acclimated to deep shade is suddenly challenged with saturating incident light, a response that physiologists call induction. A second response variable was the influence of a short sunfleck on photosynthetic induction during a subsequent sunfleck, a response that physiologists call priming.

"As expected, the leaves that developed under fluctuating light exhibited more rapid photosynthetic induction and more successful priming than the leaves that developed in homogeneous shade," said Thomas Marler, author of the paper. This new knowledge indicates a substantial percentage of the established leaf physiology literature concerning use of sunflecks includes results that are dubious because the sunfleck methods used experimental leaves that were grown under shadecloth.

The study also reveals the value of off-site conservation germplasm collections. "Ubiquitous invasive insect herbivores in Guam create difficulties for research on the native cycad species," said Marler. "The ex situ germplasm collections in several countries allow scientists to sustain relevant research on this important cycad species." This study, for example, was conducted in one of these managed gardens in the Philippines where the plants are not threatened by the insects.

When new knowledge illuminates a fallacy in established experimental methods, a search for an empirical approach for salvaging the published information is appropriate. If a universal conversion factor could be identified, for example, then the published data could be corrected with that conversion. Unfortunately, there were quantitative differences among the three model species with regard to how the homogeneous shade leaves behaved compared to the heterogeneous shade leaves. Therefore, the published sunfleck use literature based on methods that employed homogeneous shade-grown leaves should be interpreted with caution.
Further reading: Marler, T.E. 2020. Artifleck: the study of artifactual responses to light-flecks with inappropriate leaves. Plants 9: 905; doi:10.3390/plants9070905.

University of Guam

Related Photosynthesis Articles from Brightsurf:

During COVID, scientists turn to computers to understand C4 photosynthesis
When COVID closed down their lab, a team from the University of Essex turned to computational approaches to understand what makes some plants better adapted to transform light and carbon dioxide into yield through photosynthesis.

E. coli bacteria offer path to improving photosynthesis
Cornell University scientists have engineered a key plant enzyme and introduced it in Escherichia coli bacteria in order to create an optimal experimental environment for studying how to speed up photosynthesis, a holy grail for improving crop yields.

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.

Photosynthesis in a droplet
Researchers develop an artificial chloroplast.

Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.

Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.

Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.

Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.

Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.

Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.

Read More: Photosynthesis News and Photosynthesis Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to