Nav: Home

Skoltech research puts exciton-polaritons in their place with new artificial laser-built lattices

September 16, 2020

Researchers at the Hybrid Photonics Laboratories in Skoltech and Southampton (UK), in collaboration with Lancaster University (UK), have demonstrated a new optical method to synthesize artificial solid-state crystal structures for cavity-polaritons using only laser light. The results could lead to the realization of field-programmable polariton circuitry and new strategies to create guided light and robust confinement of coherent light sources. The results were recently published in the journal Nature Communications.

Creating artificial lattices for quantum particles permits us to explore physics in an environment that might not be conventionally found in nature. Artificial lattices are especially appealing since their symmetries lead often to exactly solvable models and a transparent understanding of their properties. Designing them is, however, a challenging task with limited flexibility. Materials need to be irreversibly engineered to get the job done and even optical lattice techniques for cold atoms cannot attain arbitrary lattice shapes.

The researchers, Dr. Lucy Pickup (Southampton), Dr. Helgi Sigurdsson (Southampton and Skoltech), Prof Janne Ruostekoski (Lancaster), and Prof Pavlos Lagoudakis (Skoltech and Southampton) recognized and overcame this challenge by developing a new method to create arbitrarily shaped and reprogrammable artificial lattices using only structured laser light. The "reprogrammable" feature meant that the cavity-polariton system could be changed from one lattice to another without the costly need to engineer a new system from scratch.

When the laser light hits a semiconductor quantum well it excites a lot of electrons, holes, and bound states of the two known as excitons. When the quantum well is put between two mirrors, forming a trap (or a cavity) for the photons, some of the exciton particles start becoming "dressed" in photons, forming new exotic half-light, half-matter quasiparticles known as exciton-polaritons or cavity-polaritons.

Exciton-polaritons are very interactive and bounce frequently off one another. However, they also bounce off normal electrons, holes, and excitons in the background around them. The researchers could then show that by applying laser light in a geometrically structured fashion the exciton-polaritons started bouncing of the excited electrons, holes, and excitons following the shape of the laser. In other words, the exciton-polaritons started experiencing a synthetic potential landscape imprinted by the laser.

The laser-generated potential landscapes are only felt by the exciton-polaritons and not the photons inside the cavity, making the system uniquely different from photonic crystals. By creating a laser pattern with translational symmetry, the researchers produced the fundamental signature of solid-state systems, the formation of crystal energy bands for exciton-polaritons, just like one would observe for electrons in solid-state materials.

"The results open a path to study dissipative many-body quantum physics in a lattice environment with properties that cannot be reproduced in normal Hermitian quantum systems," Dr. Lucy Pickup, article co-author, says.

Dr. Helgi Sigurdsson adds: "It is an exciting development for the relatively new field of non-Hermitian topological physics."

The produced bands could be reconfigured by simply adjusting the laser pattern, permitting a non-invasive method to access quantum physics in artificial lattices. The results could be useful in a variety of applications from optical-based communications and information processing, to high sensitivity detectors for biomedical purposes and topologically protected lasing. The results also open a path to study fundamental many-body lattice physics in an open (non-Hermitian) quantum environment.
Skoltech is a private international university located in Russia. Established in 2011 in collaboration with the Massachusetts Institute of Technology (MIT), Skoltech is cultivating a new generation of leaders in the fields of science, technology and business, is conducting research in breakthrough fields, and is promoting technological innovation with the goal of solving critical problems that face Russia and the world. Skoltech is focusing on six priority areas: data science and artificial intelligence, life sciences, advanced materials and modern design methods, energy efficiency, photonics and quantum technologies, and advanced research. Web:

Skolkovo Institute of Science and Technology (Skoltech)

Related Electrons Articles:

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.
Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells
Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.
Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.