Anti-reflective coating inspired by fly eyes

September 16, 2020

The eyes of many insects, including the fruit fly, are covered by a thin and transparent coating made up of tiny protuberances with anti-reflective, anti-adhesive properties. An article published in the journal Nature reveals the secrets of how this nano-coating is made. The authors, from the University of Geneva (UNIGE) and University of Lausanne (UNIL) - together with ETH Zurich (ETHZ) - show that the coating only consists of two ingredients: a protein called retinin and corneal wax. These two components automatically generate the regular network of protuberances by playing the roles of activator and inhibitor, respectively, in a morphogenesis process modelled in the 1950s by Alan Turing. The multi-disciplinary team even succeeded in artificially reproducing the phenomenon by mixing retinin and wax on different kinds of surface. This process, which is very inexpensive and is based on biodegradable materials, was used to obtain nano-coatings with a morphology similar to that of insects, with anti-adhesive and anti-reflective functionalities that could have numerous applications in areas as diverse as contact lenses, medical implants and textiles.

"The nano-coating that covers the surface of the eyes of some insects was discovered in the late 1960s in moths," begins Vladimir Katanaev, a professor in the Department of Cell Physiology and Metabolism in UNIGE's Faculty of Medicine and the study's lead investigator. "It's made up of a dense network of small protrusions about 200 nanometres in diameter and several dozens of nanometres in height. It has the effect of reducing light reflection."

The cornea of an insect without a coating typically reflects about 4% of the incident light, whereas the proportion drops to zero in insects that do have the covering. Although an improvement of 4% may seem small, it is enough of an advantage - especially in dark conditions - to have been selected during evolution. Thanks to its anti-adhesive properties, the coating also provides physical protection against the tiniest dust particles in the air.

Professor Katanaev moved into this research field ten years ago. In 2011, he and his team were the first to discover the nano-coating on the eyes of fruit flies (Drosophila melanogaster). This insect is much more suited to scientific research than moths, in particular because its genome has been completely sequenced.

Alan Turing: guiding light

Based on their preliminary results, in 2015 Professor Katanaev and his colleagues suggested that the nano-coating resulted from a morphogenesis mechanism that the British mathematician Alan Turing had modelled in the 1950s. This model holds that two molecules are organised automatically to produce patterns in regular patches or strips. The first serves as an activator, starting a process where a special pattern emerges and self-amplifies. But it also stimulates the second molecule at the same time, which acts as an inhibitor and is diffused more quickly. This model has made it possible to explain natural phenomena on a macroscopic scale - such as the spots on a leopard or the stripes on a zebra - and on a microscopic scale but never yet on the nanoscopic scale.

The Geneva-based researcher has now gathered more evidence to support this hypothesis. Thanks to biochemical analyses and the use of genetic engineering, Professor Katanaev and his colleagues have succeeded in identifying the two components involved in the reaction-diffusion model developed by Turing. This hinges on a protein called retinin and wax produced by several specialised enzymes, two of which have been identified. Retinin plays the role of activator: with its initially unstructured shape, it adopts a globular structure upon contact with the wax and begins to generate the pattern. The wax, on the other hand, plays the role of inhibitor. The powerplay between the two leads to the emergence of the nano-coating.

Artificial nano-coating

"We subsequently managed to produce retinin at very low cost using bacteria genetically modified for this purpose", continues Professor Katanaev. "After purifying it, we mixed it with different commercial waxes on glass and plastic surfaces. We were then able to reproduce the nano-coating very easily. It's similar in appearance to the coating found in insects and has anti-reflective and anti-adhesive properties. We think that we can deposit this type of nano-coating on almost any kind of surface, including wood, paper, metal and plastic."

Initial tests have shown that the coating is resistant to 20 hours of washing in water (it is easily damaged by detergent or scratching, although technological improvements could make it more robust). The anti-reflective properties have already aroused a certain degree of interest among manufacturers of contact lenses, while the anti-adhesive properties could appeal to the producers of medical implants. Indeed, this type of coating could make it possible to control where human cells hook on. Industry already has the techniques needed to obtain this outcome. But they use harsh methods, such as lasers or acids. The Geneva team's solution has the advantage of being inexpensive, benign and totally biodegradable.

Université de Genève

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to