Better communication helps translate molecular tools

September 16, 2020

A sustained dialogue must be established between molecular ecologists, policymakers and other stakeholders for DNA-based approaches to be adopted in marine monitoring and assessment, according to KAUST scientists and colleagues.

New tools able to solve some of the challenges facing this field aren't getting the attention they most likely deserve, explains KAUST molecular ecologist, Eva Aylagas, the article's corresponding author. "This is because it is common practice for researchers, policymakers and other stakeholders involved in marine environmental management to act independently," says Aylagas.

DNA barcoding and metabarcoding are molecular techniques used to identify species by comparing small fragments of their DNA against a reference database. Traditionally, assessing the health of a marine ecosystem involves identifying organisms from samples based on their morphological characteristics. This requires the involvement of specialized taxonomists and is often very expensive and time consuming. DNA barcoding and metabarcoding could save monitoring programs a lot of time and money.

Aylagas and her colleagues propose a roadmap for developing meaningful collaboration between stakeholders with the aim of implementing molecular approaches in marine monitoring. The roadmap was based on lessons from several successful projects.

For example, DNA metabarcoding is being tested in New Zealand for the purpose of monitoring the impacts of the country's extensive aquaculture farms on the surrounding marine environment. Aquaculture can cause environmental damage through the accumulation of organic matter from fish excretions and nutrients from uneaten food, causing low-oxygen conditions for animals and plants that inhabit the marine sediment, while also generating toxic conditions for aquaculture fish.

The New Zealand government has funded a multiyear project to compare traditional and DNA-based approaches for monitoring marine sediment in the vicinity of a large number of aquaculture farms in several regions of the country. This involved extensive collaboration between government, monitoring agencies, industry and researchers.

Having aquaculture farmers and relevant government agencies directly involved from the outset was critical for helping scientists develop a protocol that resulted in a product that satisfied everyone involved. "Currently, DNA metabarcoding is in its final phase of validation and will be established in environmental legislation in New Zealand for routinely monitoring the effects of aquaculture activities. The approach provided reliable, faster and ultimately cheaper results than the methods previously used," says KAUST co-author and marine ecologist Susana Carvalho.

Another example comes from the European DEVOTES project that developed innovative tools and indicators for assessing the impacts of human activities on marine biodiversity. A large number of stakeholders were involved in comparing traditional taxonomic methods with DNA metabarcoding approaches for monitoring macroinvertebrates living in marine sediment, such as small crustaceans and worms. The diversity of these organisms in the sediment is considered a robust indicator of marine ecosystem health. DNA metabarcoding yielded very positive results in this effort as well, and the technique is proposed for improving ecological assessments within Europe.

"The main lesson learned from this and other projects is the need to establish robust and solid networking between researchers and policymakers to effectively develop, test, validate and standardize novel monitoring tools," says Aylagas.

KAUST's researchers and their colleagues recommend a roadmap that encourages interaction and engagement, communication and commitment, and finally they stress the need for decision framing for the successful integration of new molecular methods into routine use.

On the home front, KAUST researchers have been in discussions with representatives from governmental agencies in the Kingdom of Saudi Arabia and with other stakeholders to present the potential of DNA-based tools for enhancing marine monitoring in the Red Sea region.

King Abdullah University of Science & Technology (KAUST)

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to