Parts of genome without a known function may play a key role in the birth of new proteins

September 17, 2014

Researchers in Biomedical Informatics at IMIM (Hospital del Mar Medical Research Institute) and at the Universitat Politècnica de Catalunya (UPC) have recently published a study in eLife showing that RNA called non-coding (IncRNA) plays an important role in the evolution of new proteins, some of which could have important cell functions yet to be discovered.

Ribosomes produce proteins from the instructions found in an RNA molecule. However, only 2% of the human genome is RNA containing information for the synthesis of proteins, meaning it is coding. Other parts of the genome that are transcribed could be "evolutionary noise", parts of the DNA that are copied to RNA randomly but with no concrete biological function. Now, a new sequencing technique has revealed that many of these transcripts (IncRNAs) may also translate into proteins, leading to an intense debate.

"We have confirmed that in all six species that were studied -human beings, mice, fish, flies, yeast and a plant- many of the IncRNAs were associated to ribosomes and seemed to be ready to translate RNA into proteins. This suggests that they could act as a repository for the synthesis of new proteins" explains Mar Albà, a professor at ICREA and the coordinator for the research group on Evolutionary Genomics at IMIM.

The study has found almost 2,500 IncRNAs that had not been studied, besides those identified previously, and has shown that very few IncRNAs are in more than one species. This would suggest that they have evolved recently. This hypothesis is backed by the fact that the properties of the IncRNA molecules show many similarities with the properties of "young" genes that are known to produce proteins.

"The birth of a new functional protein is a trial and error process that probably requires the production of many transcripts that will not survive the test of time, and IncRNA seems to fit this role. The study of closely related species will allow us to better understand how new coding genes are formed and identify those that can be functional. It will also be interesting to study the link between the alteration of IncRNA expression patterns and certain diseases" concludes Mar Albà.

Article of Reference:

"Long non-coding RNAs as a source of new peptides". Jorge Ruiz-Orera (Fundación IMIM), Xavier Messeguer (Universitat Politècnica de Catalunya), Juan Antonio Subirana (Universitat Politècnica de Catalunya), and M. Mar Alba (Fundacion IMIM and ICREA). Tracking no: 29-05-2014-RA-eLife-03523R1

IMIM (Hospital del Mar Medical Research Institute)

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to