Using solar energy to turn raw materials into ingredients for every day life

September 17, 2014

Just about everything we touch in the course of a day - car, phone, computer, fridge, detergent - even medicines, rely on the chemical industry to turn raw materials such as petroleum by-products, minerals and farm products into valuable chemicals that are the ingredients of life's essential objects.

QUT scientist Dr Sarina Sarina, who achieved outstanding progress in driving this energy intensive chemical production process at ambient temperature using light instead of fossil fuels, has won the prestigious Alexander von Humboldt fellowship at the famous Max Planck Institute in Berlin.

"The problem is it takes a massive amount of electrical energy to make the heat required to convert the crude materials," Dr Sarina, from QUT's Science and Engineering Faculty, said.

"They must be heated to 200 or 300 degrees to achieve the chemical conversion and so this process takes about one third of the energy consumed by manufacturing," Dr Sarina said.

"My research has found that we can achieve high efficiency using sunlight for many chemical productions, and at much lower temperatures.

"The key is to use metal nanoparticles such as gold nanoparticles as a 'photocatalyst', which absorbs light and converts the raw materials to useable products.

"All we will need is a giant lens and gold nanoparticles as the photocatalyst to drive the chemical reactions - and all at room temperature so we won't need furnaces."

Dr Sarina said traditional photocatalysts were semi-conductors made of metal oxide with the drawback that they absorbed only UV, not visible light.

"This means traditional photocatalysts use only a small part of the energy available because UV accounts for just 4 per cent of the solar spectrum and 96 per cent of the solar spectrum is visible light and infra-red," she said.

"Previous QUT research by Professor Huai Yong Zhu found that gold nanoparticles absorb most of the solar spectrum so they are very efficient at using visible light.

"Gold nanoparticles, apart from being very expensive, can drive only a small number of reactions but we have found that when we add palladium to the gold nanoparticles it can drive many more reactions than gold by itself.

"I will be working at the Max Planck Institute to develop cheaper, more efficient photocatalysts from bimetallic nanoparticles such as copper or silver and palladium or the other "transition metals" such as iridium and rhodium to find which combination would drive a specific chemical reaction.

"Ultimately, I want to find the perfect photocatalysts to use with Australia's abundant sunshine to convert raw materials using zero fossil fuels for energy."
Media contact: Rose Trapnell, 07 3138 2361 or

Queensland University of Technology

Related Gold Nanoparticles Articles from Brightsurf:

Gold nanoparticles turn the spotlight on drug candidates in cells
A team including researchers from Osaka University has developed a surface-enhanced Raman scattering (SERS) microscopy technique for tracking small molecules in live cells.

Dipanjan Pan demonstrates new method to produce gold nanoparticles in cancer cells
Researchers published a seminal study in Nature Communications that demonstrates for the first time a method of biosynthesizing plasmonic gold nanoparticles within cancer cells, without the need for conventional bench-top lab methods.

From nanocellulose to gold
When nanocellulose is combined with various types of metal nanoparticles, materials are formed with many new and exciting properties.

Gold nanoparticles to save neurons from cell death
An international research team coordinated by Istituto Italiano di Tecnologia in Lecce (Italy) has developed gold nanoparticles able to reduce the cell death of neurons exposed to overexcitement.

A potential breakthrough in obesity medicine with the help of gold nanoparticles
A team of researchers in Korea believes to have discovered a synthetic gold-based compound which may help patients with obesity.

Peppered with gold
Terahertz waves are becoming more important in science and technology.

Gold nanoparticles uncover amyloid fibrils
EPFL scientists have developed powerful tools to unmask the diversity of amyloid fibrils, which are associated with Alzheimer's disease and other neurodegenerative disorders.

Gold nanoparticles detect signals from cancer cells
A novel blood test that uses gold nanoparticles to detect cancer has also been shown to identify signals released by cancer cells.

What happens to gold nanoparticles in cells?
Gold nanoparticles, which are supposed to be stable in biological environments, can be degraded inside cells.

Gold nanoparticles shown to be safe and effective treatment for prostate cancer
Bio-compatible gold nanoparticles designed to convert near-infrared light to heat have been shown to safely and effectively ablate low- to intermediate-grade tumors within the prostate, according to a study conducted at the Icahn School of Medicine and published in the journal Proceedings of the National Academy of Sciences.

Read More: Gold Nanoparticles News and Gold Nanoparticles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to