Dynamic braces for kids with scoliosis now in development

September 17, 2015

Some six million people in the U.S. suffer from scoliosis, a sideways curvature of the spine. These include approximately 2 to 3% of adolescents who are diagnosed each year with idiopathic scoliosis, which is usually identified during puberty and progresses until skeletal maturity. One in 500 children today require treatment using spine braces and 1 in 5,000 need spinal surgery. The typical spine brace is made of rigid plastic that fits around the child's trunk and hips and applies counter-pressure on the spine's abnormal curve, on the theory that pressure and support on the curve from outside will stimulate more normal growth of the spine.

The rigid braces have several shortcomings: they "freeze" the child's upper body and limit movement to such an extent that users often avoid wearing the brace. And as the child grows, the required external forces to correct the abnormal posture change along the length of the curve and over the course of treatment. Having the flexibility to move when wearing a spinal brace while still applying corrective forces would be a very useful feature for both patients and physicians.

Sunil Agrawal, professor of mechanical engineering and of rehabilitation and regenerative medicine at Columbia Engineering, is working on solving the problem. He and his collaborators--David P. Roye, St. Giles Foundation Professor of Pediatric Orthopedic Surgery at the Columbia University Medical Center, and Charles Kim, professor of mechanical engineering at Bucknell University--are developing a dynamic spine brace that is more flexible than the rigid braces now in use. Their work is so promising that they have just won a $1 million grant from the National Science Foundation's National Robotics Initiative.

"Every year, 30,000 children use a rigid brace to treat scoliosis, while 38,000 patients undergo spinal fusion surgery, so this award will make a big difference," Agrawal says. "If we can design a flexible brace that modulates the corrective forces on the spine in desired directions while still allowing the users to perform typical everyday activities, we will bring revolutionary change to the field."

Agrawal and his team have already developed prototype wearable spine braces that consist of rings that fit on the human torso. These rings are dynamically actuated by servomotors placed on adjacent rings to control the force or position applied on the human body. Onboard sensors record the force and motion data and transmit the information to a host computer for monitoring and adjusting the treatment. The team has also developed a second brace that is fully passive, made of compliant components able to adjust stiffness in specific directions. However, both these braces have drawbacks. The dynamic brace needs an active power source while the passive brace cannot provide active controls.

"While we are the first group to propose parallel-actuated spine braces and compliant braces, these are just in initial phases," Agrawal explains. "What we will do, thanks to the NSF award, is to design hybrid semi-active spine braces that combine the merits of the two. These will be less power hungry and can be worn over a longer duration of time."

The team, which has drawn together experts in robotics and pediatric orthopedics, plans to test all three types of braces on children with scoliosis at CUMC. Preliminary experiments have already started to characterize the feasibility of the dynamic braces on healthy subjects with normal spines to characterize the body's stiffness in different directions during activities of daily living.

"Scoliosis impacts the quality of life of those affected, limiting their activity, causing pain, and diminishing their self-esteem," Agrawal adds. "We expect our work will transform treatment due to the ability of the brace to modulate force or position at specific locations of the spine and will greatly improve the quality of life for children with this debilitating condition."
-end-
LINKS

http://me.columbia.edu/sunil-agrawal
http://engineering.columbia.edu/
http://www.cumc.columbia.edu/

Columbia University School of Engineering and Applied Science

Related Regenerative Medicine Articles from Brightsurf:

Stem cells: new insights for future regenerative medicine approaches
The study published in Open Biology unravels important data for a better understanding of the process of division in stem cells and for the development of safer ways to use them in medicine.

Engineered developmental signals could illuminate regenerative medicine
For a tiny embryo to develop into an adult organism, its cells must develop in precise patterns and interact with their neighbors in carefully orchestrated ways.

A new discovery in regenerative medicine
An international collaboration involving Monash University and Duke-NUS researchers have made an unexpected world-first stem cell discovery that may lead to new treatments for placenta complications during pregnancy.

New research into stem cell mutations could improve regenerative medicine
Research from the University of Sheffield has given new insight into the cause of mutations in pluripotent stem cells and potential ways of stopping these mutations from occurring.

Keratin scaffolds could advance regenerative medicine and tissue engineering for humans
Researchers at Mossakowski Medical Research Center of the Polish Academy of Science have developed a simple method for preparing 3D keratin scaffold models which can be used to study the regeneration of tissue.

NUS Medicine researchers can reprogramme cells to original state for regenerative medicine
Scientists from NUS Medicine have found a way to induce totipotency in embryonic cells that have already matured into pluripotency.

A new material for regenerative medicine capable to control cell immune response
Scientists of Tomsk Polytechnic University jointly with the University of Montana (USA) proposed a new promising material for regenerative medicine for recovery of damaged tissues and blood vessels.

Optoceutics: A new technique using light for regenerative medicine
Researchers in Italy at IIT-Istituto Italiano di Tecnologia used visible light together with photo-sensitive and biocompatible materials to facilitate the formation of new blood vessels in vitro.

Major stem cell discovery to boost research into development and regenerative medicine
A new approach has enabled researchers to create Expanded Potential Stem Cells (EPSCs) of both pig and human cells.

Spinning-prism microscope helps gather stem cells for regenerative medicine
Pluripotent stem cells are crucial to regenerative medicine, but better screening methods are needed to isolate safe and effective cells for medical use.

Read More: Regenerative Medicine News and Regenerative Medicine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.