Nav: Home

How nitrogen-fixing bacteria sense iron

September 17, 2019

Researchers at the University of East Anglia have discovered how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.

Some bacteria naturally fix nitrogen from the soil into a form that plants can use. In nature, most plants get nitrogen either from soil bacteria that do this work or from plants and microbes that die and recycle their nitrogen into the soil. In agriculture, soil is enriched with synthetic nitrogen fertilizers.

Virtually all life forms require iron to survive, yet too much of the metal can be catastrophic. In healthy cells, many systems regulate this delicate balance.

In many nitrogen-fixing bacteria, a protein called RirA plays a key role in regulating iron. It senses high levels of the metal and helps to shut down the production of proteins that bring in more iron.

RirA contains a cluster of four iron and four sulfur atoms, which acts as a sensor for iron availability. But until now, exactly how this cluster structure detects iron levels in a cell was unclear.

The UEA research team was led by Prof Nick Le Brun from the School of Chemistry in collaboration with researchers at the University of Essex.

They used a technique known as time-resolved mass spectrometry to examine the sensory response of the iron-sulfur cluster of RirA when different levels of iron were available.

The results revealed a 'loose' iron atom in the cluster. When iron levels drop, this atom is rapidly lost as it is scavenged for use in other essential cellular processes.

Without it, the cluster in RirA collapses and the protein becomes inactive, which prompts the cell to produce proteins that enable the cell to take up iron from its surroundings.

Once iron levels are sufficient again, RirA regains its cluster and becomes active again, stopping the production of proteins that bring in more iron.

Iron-sulfur clusters are common in many proteins, and this work offers new insight into their various roles. It also highlights the potential to use time-resolved mass spectrometry to examine biological processes in depth.

Prof Le Brun said 'This research provides unprecedented detail of how the iron-sensing cluster of RirA responds to low iron conditions, and establishes, for the first time, how an iron-sulfur cluster can be used to sense iron.

"This is an important piece in the bigger puzzle of how life deals with iron, a nutrient it cannot do without but one it must also avoid having in excess."
-end-
'Mechanisms of iron- and O2-sensing by the [4Fe-1 4S] cluster of the global iron regulator RirA' is published in the journal eLife on Tuesday, September 17, 2019.

University of East Anglia

Related Nitrogen Articles:

Reducing reliance on nitrogen fertilizers with biological nitrogen fixation
Crop yields have increased substantially over the past decades, occurring alongside the increasing use of nitrogen fertilizer.
Flushing nitrogen from seawater-based toilets
With about half the world's population living close to the coast, using seawater to flush toilets could be possible with a salt-tolerant bacterium.
We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible.
Researchers discover new nitrogen source in Arctic
Scientists have revealed that the partnership between an alga and bacteria is making the essential element nitrogen newly available in the Arctic Ocean.
Scientists reveal impacts of anthropogenic nitrogen discharge on nitrogen transport in global rivers
Scientists found that riverine dissolved inorganic nitrogen in the USA has increased primarily due to the use of nitrogen fertilizers.
Nitrogen gets in the fast lane for chemical synthesis
A new one-step method discovered by synthetic organic chemists at Rice University allows nitrogen atoms to be added to precursor compounds used in the design and manufacture of drugs, pesticides, fertilizers and other products.
More Nitrogen News and Nitrogen Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.