Nav: Home

Diamonds are forever: New foundation for nanostructures

September 17, 2019

Devices smaller than the width of a human hair are key to technologies for drug delivery, semiconductors, and fuel production. But current methods for fabricating these micro- and nanostructures can be expensive and wasteful.

Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have fabricated a novel glass and synthetic diamond foundation that can be used to create miniscule micro- and nanostructures. This new substrate is low cost and leaves minimal waste, the researchers say, in a study published in Diamond and Related Materials.

"We've spent the last couple of decades throwing away plastics," said Stoffel Janssens, the first author of the study, and a member of OIST's Mathematics, Mechanics, and Materials Unit. "With sustainable materials like diamond and glass, we're minimizing negative environmental impacts."

Building a Nanostructure

Current processes in place for micro- and nanodevice fabrication can be costly and inefficient. Synthetic diamond, which has the same chemical structure as natural diamond, is resilient, low-cost and sustainable, and glass is versatile and electrically insulating; technologies that combine the two are promising.

The researchers made their foundation using glass etching, a process that relies on acid to reduce a glass slab to a thickness of 50 micrometers (about the length of a typical cell in the human body). Janssens and his collaborators, Professor Eliot Fried, David Vázquez-Cortés, Alessandro Giussani, and James Kwiecinski, used a laser to drill cavities, approximately 40 micrometers in diameter and depth, into one side of the glass slab.

Next, the scientists grew a 175-nanometer thick nanocrystalline diamond film on the other side of the glass and transformed the drilled cavities into small channels sealed with suspended diamond. Combining diamond and glass creates a transparent structure in which scientists can grow and visualize living cells.

"During this fabrication process, the glass can easily become rough and opaque," said Janssens. "There are so many small things that can go wrong; we made many adjustments to optimize our process."

Moving forward, Janssens hopes to create porous diamond films tailored to deliver specific drugs. The researchers have filed a patent for the new foundation and are exploring its commercial potential.

"This type of research can only be done through the combined efforts of researchers with different backgrounds," said Fried. "The interdisciplinarity of OIST and its collaborative environment made our work possible."
-end-


Okinawa Institute of Science and Technology (OIST) Graduate University

Related Nanostructures Articles:

Electron correlations in carbon nanostructures
Graphene nanoribbons are only a few carbon atoms wide and have different electrical properties depending on their shape and width.
Paving a way to achieve unexplored semiconductor nanostructures
A research team of Ehime University paved a way to achieve unexplored III-V semiconductor nanostructures.
Nanostructures help to reduce the adhesion of bacteria
Scientists has shown how bacteria adhere to rough surfaces at the microscopic level.
Diamonds are forever: New foundation for nanostructures
Researchers at the Okinawa Institute of Science and Technology Graduate University (OIST) have fabricated a novel glass and synthetic diamond foundation that can be used to create miniscule micro -- and nanostructures.
How do atoms vibrate in graphene nanostructures?
Researchers from the University of Vienna, the Advanced Institute of Science and Technology in Japan, the company JEOL and La Sapienza University in Rome have developed a method capable to measure all phonons existing in a nanostructured material.
Heterophase nanostructures contributing to efficient catalysis
In the research on phase engineering of noble metal nanomaterials, amorphous/crystalline heterophase nanostructures have exhibited some intriguing properties.
Dresden physicists use nanostructures to free photons for highly efficient white OLEDs
Thanks to intensive research in the past three decades, organic light-emitting diodes (OLEDs) have been steadily conquering the electronics market -- from OLED mobile phone displays to roll-out television screens, the list of applications is long.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
New data on ultrafast electron photoemission from metallic nanostructures obtained
Metallic nanoparticle ensembles are capable of emitting short bunches of electrons when irradiated by powerful laser pulses of femtosecond (1 fs = 10-15 s) duration.
New efficient way to engineer nanostructures mimicking natural immune response complexes
Collaboration between Novo Nordisk and Professor Kurt Gothelf's laboratory at Aarhus University yields novel method to engineer large multi-antibody-like nanostructures using DNA nanotechnology.
More Nanostructures News and Nanostructures Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.