Nav: Home

Did microbes assist life in colonizing land?

September 17, 2019

All living organisms exist and function only in cooperation with an abundance of symbiotic microorganisms, and have developed together with them over the course of the earth's history. This central finding of modern life sciences has led researchers worldwide to analyse the highly complex interactions and long-term bonds of host organisms and microbes in ever greater detail. Gradually, they want to achieve a new functional understanding of biology and the development of life. In the analysis of the complex interactions within the so-called metaorganism, the unit consisting of a body and the totality of its microbial colonisation, in short the microbiome, scientists use techniques such as genome sequencing. These technologies make it possible to analyse genetic information from large quantities of biological sample material and, thanks to new high-throughput methods, quickly assign it to specific organisms and, in some cases, to possible functions.

Scientists from all working groups at Kiel University involved in the Collaborative Research Centre (CRC) 1182 "Origin and Function of Metaorganisms" have now compared various sequencing techniques in an extensive comparative study using various model organisms: On the one hand to assess their optimal areas of application, and on the other hand to identify possible similarities between different multicellular host organisms and their microbiomes. A surprising result of the study presented here is that organisms living on land generally have a significantly different microbiome than species living in water. The researchers interpret this as an indication that microorganisms may have played a key role in the evolutionary transition from purely aquatic life to life on land. The new research results were published last week in the renowned scientific journal Microbiome.

The microbiome and adaptation to terrestrial life

In the new study, the scientists of the CRC 1182 used the opportunity to compare the microbiomes of many different model organisms - from simple sponges to vertebrates, including humans. They examined sample material from the various subprojects of the collaborative research project for patterns in the composition of microbial communities and compared different methods of the two most important sequencing technologies. By chance, they came across an interesting observation: the microbiome of terrestrial organisms, regardless of their kinship relationships, differs significantly from those of aquatic organisms - in which all analytical techniques coincided. Terrestrial organisms have a lower diversity of microorganisms contained in their microbiome.

A possible explanation for the differences in the composition of the microbiome could be that former aquatic organisms were forced to acquire new microbial communities upon the colonisation of the land. The transition from water to land, which began about 500 million years ago, might have been dependent on a change in the microbiome. "Just as adaptation to life on land brought about gradual, but massive morphological changes, such changes apparently also took place in the terrestrial host-associated microbiome," says John Baines, Professor for Evolutionary Genomics at Kiel University. "In order to cope with the new environmental conditions, living organisms may have resorted to terrestrially adapted microbes to maintain their vital functions," Baines continues.

Choosing the right tool

In addition to these revealing findings on a possible influence of microbiota on the course of evolution, the new CRC 1182 study also provides an aid in choosing the appropriate analytical method for the investigation of a given microbial community. On the one hand, certain sequencing methods provide only a rough identity of the microorganisms present in a sample. These comparatively inexpensive methods - such as the so-called '16s rRNA gene amplicon' method - use individual marker genes from which it is possible to deduce the associated living organisms.

More complex methods such as the so-called 'metagenomic shotgun' sequencing make it possible to record and evaluate all the genetic information in a sample. For example, they can identify individual bacterial species within the microbiome and are also able to deduce microbial functions. In comparison, however, they are more cost-intensive, their informative value depends more on the specific field of application and they are therefore currently less standardised than simpler methods.

New insights into the course of evolution

In the future, the Kiel researchers, together with their international colleagues, want to understand more precisely what role microorganisms played in the transition from an aquatic to a terrestrial way of life over the course of earth's history. "There are many indications that symbiotic microorganisms have also played a role in major evolutionary transitions," stresses CRC 1182 spokesperson Professor Thomas Bosch. "It is therefore our goal to identify the specific evolutionary mechanisms that caused the diversification of the microbiome parallel to the colonization of the land," continues Bosch.

Kiel University

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at