Nav: Home

Bat influenza viruses possess an unexpected genetic plasticity

September 17, 2019

An unprecedented genetic plasticity and a putative function of NA

"Influenza viruses have an inherent high mutation rate," explains Prof. Martin Schwemmle of the Medical Center - University of Freiburg and coordinator of this study. "We therefore first tested the bat flu virus' genetic stability to assess its natural mutational potential in cell culture". To their surprise, within a short period of time all isolated viruses acquired specific amino acid mutations in the viral hemagglutinin (HA) and a truncated neuraminidase (NA) surface glycoprotein. The scientists performed further experiments and showed that these amino acids changes in HA enabled an NA independent viral growth. "Using a variety of mutant viruses, we finally demonstrated that in the absence of a mutated HA, functional NA is required for viral spread". While the role of the mysterious NA protein has been unknown so far, the researchers found some evidence that its function could be to downregulate cellular MHC-II surface levels to subsequently allow efficient release of infectious viruses from infected host cells.

Potentially low risk for humans

Concerning the potential spill-over risk of the bat influenza virus to the human population, Prof. Schwemmle is cautiously optimistic as he says, "Ferrets are the best small animal model to study human pathogenicity and transmission of sialic acid dependent influenza A viruses. Assuming ferrets are also the appropriate model to study bat flu viruses that instead use MHC-II for cell entry, our study does not provide any indications that these viruses can cause or transmit disease to contact animals. Therefore, the results can be interpreted as that there iscurrently a low zoonotic potential. However, due to the genetic plasticity of these viruses any precise prediction is difficult".

Nevertheless, this work has raised several open questions that remain to be answered: first, is bat influenza virus NA downregulating MHC-II surface expression and, if so, what is the underlying mechanism? Second, is it possible that bat influenza virus HA proteins can gain affinity to novel cell entry receptors due to their flexibility to accommodate amino acid mutations in HA? "We are currently looking into these questions in greater detail," says Prof. Schwemmle.
-end-


University of Freiburg

Related Viruses Articles:

Hundreds of novel viruses discovered in insects
New viruses which cause diseases often come from animals. Well-known examples of this are the Zika virus transmitted by mosquitoes, bird flu viruses, as well as the MERS virus which is associated with camels.
First video of viruses assembling
For the first time, researchers have captured images of the formation of individual viruses, offering a real-time view into the kinetics of viral assembly.
Plant viruses may be reshaping our world
A new review article appearing in the journal Nature Reviews Microbiology highlights the evolution and ecology of plant viruses.
Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.
How viruses outsmart their host cells
Viruses depend on host cells for replication, but how does a virus induce its host to transcribe its own genetic information alongside that of the virus, thus producing daughter viruses?
Mobile, instant diagnosis of viruses
In a first for plant virology, a team from CIRAD recently used nanopore technology to sequence the entire genomes of two yam RNA viruses.
How ancient viruses got cannabis high
THC and CBD, bioactive substances produced by cannabis and sought by medical patients and recreational users, sprung to life thanks to ancient colonization of the plant's genome by viruses, U of T researchers have found.
Viruses under the microscope
Human herpesviruses such as HHV-6 can remain dormant in cells for many years without being noticed.
Ancient origins of viruses discovered
Research published today in Nature has found that many of the viruses infecting us today have ancient evolutionary histories that date back to the first vertebrates and perhaps the first animals in existence.
Attacking flu viruses from two sides
UZH researchers have discovered a new way in which certain antibodies interact with the flu virus.
More Viruses News and Viruses Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.