Nav: Home

Brain may not need body movements to learn virtual spaces

September 17, 2019

Virtual reality is becoming increasingly present in our everyday lives, from online tours of homes for sale to high-tech headsets that immerse gamers in hyper-realistic digital worlds. While its entertainment value is well-established, virtual reality also has vast potential for practical uses that are just beginning to be explored.

Arne Ekstrom, director of the Human Spatial Cognition Lab in the University of Arizona Department of Psychology, uses virtual reality to study spatial navigation and memory. Among the lab's interests are the technology's potential for socially beneficial uses, such as training first responders, medical professionals and those who must navigate hazardous environments. For those types of applications to be most effective, though, we need to better understand how people learn in virtual environments.

In a new study published in the journal Neuron, Ekstrom and co-author Derek Huffman, a post-doctoral researcher in the Center for Neuroscience at the University of California, Davis, advance that understanding by looking at whether or not being able to physically move through virtual spaces improves how we learn them.

"One of the big concerns or drawbacks with virtual reality is that it fails to capture the experience that we actually have when we navigate in the real world," said Ekstrom, an associate professor of psychology and the study's senior author. "That's what we were trying to address in this study: What information is sufficient for forming spatial representations that are useful in actually knowing where things are?"

The researchers had study participants explore three virtual cities while wearing virtual reality headsets. The participants navigated each city in one of three ways:
    Participants wore the headset while walking on an omnidirectional, or 360-degree, treadmill, which allows users to walk freely in any direction. In this condition, the participants could navigate through the virtual environment by walking and turning their heads.

    Participants navigated through the virtual environments using only a handheld joystick; they were not able to navigate by moving their heads or walking.

    Participants navigated by moving their bodies side to side and moving a joystick back and forth; they were not able to walk around.
Participants spent two to three hours, on average, exploring the virtual cities and locating certain shops they were instructed to find. Once they'd had an opportunity to learn the environments well, they were asked a series of questions to test their spatial memory. For example, they might be asked to imagine they were standing at the coffee shop, facing the bookstore. They would then be asked to point in the direction of the grocery store.

The accuracy of participants' responses did not vary based on which condition they were in.

Participants then underwent an MRI scan while answering a similar set of questions. This allowed the researchers to see what was happening in the brain as participants retrieved spatial memories.

The researchers found that the same areas of the brain were activated for participants in all three situations. In addition, the patterns of interaction between different regions of the brain were similar among the three conditions.

"What we found was that the neural codes were identical between the different conditions," Ekstrom said. "This suggests - as far as the brain is concerned and what we were also able to measure with behavior - that there is sufficient information with just seeing things in a virtual environment. The information you get from moving your body, once you know the environment well enough, doesn't really add that much."

The findings address a long-standing scientific debate around whether or not body movements aid in learning physical spaces.

"There's been this idea that how you learn might make a huge difference, and that if you don't have body-based cues, then you're lacking a big part of what might be important for forming memories of space," said Huffman, the study's first author. "Our research would suggest that once you have a well-formed memory of an environment, it doesn't matter as much how you learned it."

"We would say you don't need body immersion, and you don't need body cues to form complex spatial representations," Ekstom added. "That can happen with sufficient exposure in simple virtual reality applications."

From a practical standpoint, the research suggests that even basic virtual reality systems may be useful in instructional applications.

"Virtual reality has the potential to allow us to understand situations that we might not otherwise be able to directly experience," Ekstrom said. "For example, what if we could train first responders to be able to find people after an attack on a building, without them actually ever having been to that building?

"Our findings suggest there's promise for using virtual reality - even simple applications where you're just moving a joystick - to teach people fairly complex knowledge about spatial environments."
-end-


University of Arizona

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.