A Matter of concentration

September 17, 2019

Plants can grow whole new organs with the help of pluripotent stem cells throughout their entire lives. When necessary, these stem cells can develop into any type of cell within an organism. The biologist Prof. Dr. Thomas Laux and his plant genetics research group at the University of Freiburg, who are studying how the balance between stem cells and specialized cells is regulated in plants, have determined that the concentration of so-called Argonaute proteins, such as AGO1 and ZLL/AGO10, plays a central role in this process. The team recently published their findings in the scientific journal Plant Communications. First author is Dr. Fei Du.

Using the model plant Arabidopsis thaliana, or mouse-ear cress, the scientists have researched how the concentration of Argonaute proteins affects the ratio of stem cells to differentiated cells, such as flower or leaf cells. The Argonaute proteins AGO1 and ZLL/AGO10 are key factors in RNA interference, a process in which the transfer of genetic information is inhibited. Because AGO1 destroys messenger RNA, which are vital for the maintenance of stem cells, this promotes cell differentiation - in other words, their development into specialized cell types. Laux's research group has discovered that the exact opposite occurs when there is a high concentration of AGO1. In this case, the protein protects the messenger RNA from degrading and prevents the cells from differentiating, promoting the maintenance of stem cells.

As a result, the scientists have demonstrated that the balance between stem cells and differentiated cells depends on the exact concentration of Argonaute proteins - and that the activity of these proteins is completely reversed when their concentration exceeds a certain level. This means that scientists could use these proteins in biotechnology to cultivate stem cells or to develop organs - for example, a small number of cultivated stem cells could be used to reproduce plants that are able to better adapt to changes in the environment.
-end-
Prof. Dr. Thomas Laux is the head of a research group at the Institute of Biology III and a member of the excellence cluster BIOSS Centre for Biological Signalling Studies at the University of Freiburg.

University of Freiburg

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.