Nav: Home

Hyperbolic paraboloid origami harnesses bistability to enable new applications

September 17, 2019

While perhaps not as iconic as the paper crane, the hypar origami with its sweeping opposing arcs and saddle shape has long been popular for artists working in the paper folding tradition.

Now researchers at the Georgia Institute of Technology and the University of Tokyo are looking at the shape with an eye toward leveraging its structural properties, hoping to find ways to harness its bistability to build multifunctional devices or metamaterials.

For a study reported September 17 in the journal Nature Communications and supported by the National Science Foundation, the researchers examined first whether the popular origami pattern that resembles the geometric hyperbolic paraboloid - or hypar - had the same physical characteristics as its geometric counterpart and tried to understand how its folds contribute to the formation of the pattern.

"The hyperbolic paraboloid is a striking pattern that has been used in architectural designs the world over," said Glaucio Paulino, a professor in the Georgia Tech School of Civil and Environmental Engineering. "As an origami pattern, it has structural bistability which could be harnessed for metamaterials used in energy trapping or other microelectronic devices."

Structural bistability refers to the origami pattern's ability to find a resting equilibrium in two different states - when the saddle shape reverses on itself. That capability could enable devices based on the origami's structure to reconfigure to point the arcs in opposite directions on the fly.

Like any other origami, the pattern starts with a flat sheet of paper, which is then folded along concentric squares. Those folds combine to pull the tips of the paper in opposite directions, forming the opposing arcs of a hyperbolic paraboloid.

To understand more about the mechanisms that creates the saddle shapes, the researchers created a theoretical model that could serve to predict the behavior of the origami, and their analysis reinforced the idea that the structure exhibited the same characteristics of its geometric counterpart.

"One of the really interesting things we found was that the folds of concentric squares did not have to be uniform in their offsets in order to form the hypar origami," said Ke Liu, a former graduate student at Georgia Tech and now a postdoctoral fellow at the California Institute of Technology. "So some squares could be quite close together and others farther apart and still the overall shape would be a hyperbolic paraboloid."

However, the researchers noted that lack of uniformity in the folds would alter other aspects of the structure, such as how much energy would be needed to push it into its hypar shape.

"You could theoretically tune each individual hypar origami structure by changing the scale of these folds, and it would change how that structure responds to pressures pushing against it," Liu said. "Future designs for robotics or other electronics could utilize this sort of snapping behavior."

The researchers also folded the origami into an array of squares so that four hypar origami patterns were formed on the same sheet of materia.. A physical model showed that the structure has as many as 32 different stable configurations.

"The hypar tessellation with multiple stable states has promising applications as stimulus responsive metasurfaces and switches," said Tomohiro Tachi, who is an Associate Professor at the University of Tokyo, Japan.

"These types of configurations could lay the groundwork for future metasurfaces with reconfigurable properties and a high level of tunability," said Paulino, who is also the Raymond Allen Jones Chair of Engineering in the School of Civil and Environmental Engineering.
-end-
This research was supported by the National Science Foundation (NSF) under grant CMMI-1538830 and by the Raymond Allen Jones Chair at the Georgia Institute of Technology. The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsoring organizations.

CITATION: Ke Liu, Tomohiro Tachi and Glaucio H. Paulino, "Invariant and smooth limit of discrete geometry folded from bistable origami leading to multistable metasurfaces," (Nature Communications, Sept. 2019). http://dx.doi.org/10.1038/s41467-019-11935-x

Georgia Institute of Technology

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Uncharted
There's so much we've yet to explore–from outer space to the deep ocean to our own brains. This hour, Manoush goes on a journey through those uncharted places, led by TED Science Curator David Biello.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 1: Numbers
In a recent Radiolab group huddle, with coronavirus unraveling around us, the team found themselves grappling with all the numbers connected to COVID-19. Our new found 6 foot bubbles of personal space. Three percent mortality rate (or 1, or 2, or 4). 7,000 cases (now, much much more). So in the wake of that meeting, we reflect on the onslaught of numbers - what they reveal, and what they hide.  Support Radiolab today at Radiolab.org/donate.