Nav: Home

UCI team uses machine learning to help tell which wildfires will burn out of control

September 17, 2019

Irvine, Calif., Sept. 17, 2019 - An interdisciplinary team of scientists at the University of California, Irvine has developed a new technique for predicting the final size of a wildfire from the moment of ignition.

Built around a machine learning algorithm, the model can help in forecasting whether a blaze is going to be small, medium or large by the time it has run its course - knowledge useful to those in charge of allocating scarce firefighting resources. The researchers' work is highlighted in a study published today in the International Journal of Wildland Fire.

"A useful analogy is to consider what makes something go viral in social media," said lead author Shane Coffield, a UCI doctoral student in Earth system science. "We can think about what properties of a specific tweet or post might make it blow up and become really popular - and how you might predict that at the moment it's posted or right before it's posted."

He and his colleagues applied that thinking to a hypothetical situation in which dozens of fires break out simultaneously. It sounds extreme, but this scenario has become all too common in recent years in parts of the western United States as climate change has resulted in hot and dry conditions on the ground that can put a region at high risk of ignition.

"Only a few of those fires are going to get really big and account for most of the burned area, so we have this new approach that's focused on identifying specific ignitions that pose the greatest risk of getting out of control," Coffield said.

The team used Alaska as a study area for the project because the state has been plagued over the past decade by a rash of concurrent fires in its boreal forests, threatening human health and vulnerable ecosystems.

At the core of the UCI scientists' model is a "decision tree" algorithm. By feeding it climate data and crucial details about atmospheric conditions and the types of vegetation present around the starting point of a fire, the researchers could predict the final size of a blaze 50 percent of the time. A key variable is the vapor pressure deficit - just how little moisture there is in the area - during the first six days of a fire's existence. A second major consideration for Alaskan forests is the percentage of trees of the black spruce variety.

"Black spruce, which are dominant in Alaska, have these long, droopy branches that are designed - from an evolutionary perspective - to wick up fire," said co-author James Randerson, professor and Ralph J. & Carol M. Cicerone Chair in Earth System Science at UCI. "Their seeds are adapted to do well in a post-fire environment, so their strategy is to kill off everything else around them during a fire to reduce competition for their offspring."

He said Coffield was able to show that the fraction of black spruce within a 2.5-mile radius of the ignition site is an important factor in judging how big a fire will grow.

One advantage of this new method is speed, Coffield said. The algorithm "learns" with each new data point and can quickly figure out the critical thresholds for identifying large fires. It's possible for people to do this manually or by running simulations on each different ignition, he said, but the machine learning system's statistical approach is "really much faster and more efficient, especially for considering multiple fires simultaneously."

Faced with a climate change-induced jump in the number of wildfires expected each season, state, county and local firefighting authorities could benefit from some updated tools and techniques, Randerson noted. In addition to potentially saving lives and protecting property and crucial infrastructure, fire suppression efforts will also become increasingly important in preserving the natural world.

"In places like Alaska, there's a need to limit the area affected by fire, because if we keep having these unusual, high-fire years, more carbon will be lost from the landscape, exacerbating warming," Randerson said. "If we let the fires run away, we could be in a situation where there's a lot of significant damage to both the climate system and ecosystems."
-end-
Other collaborators on this project - which was supported by UCI's Machine Learning and Physical Sciences program and the National Science Foundation - were Casey Graff, a Ph.D. student in computer science; Yang Chen, an assistant researcher in Earth system science; Efi Foufoula-Georgiou, Distinguished Professor of civil & environmental engineering; and Padhraic Smyth, Chancellor's Professor of computer science.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

NOTE TO EDITORS: PHOTO AVAILABLE AT https://news.uci.edu/2019/09/17/uci-team-uses-machine-learning-to-help-tell-which-wildfires-will-burn-out-of-control

Contact: Brian Bell
949-824-8249
bpbell@uci.edu

University of California - Irvine

Related Algorithm Articles:

Algorithm personalizes which cancer mutations are best targets for immunotherapy
As tumor cells multiply, they often spawn tens of thousands of genetic mutations.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
Algorithm tells robots where nearby humans are headed
A new tool for predicting a person's movement trajectory may help humans and robots work together in close proximity.
Algorithm to transform investment banking with higher returns
A University of Bath researcher has created an algorithm which aims to remove the elements of chance, bias or emotion from investment banking decisions, a development which has the potential to reduce errors in financial decision making and improve financial returns in global markets.
Algorithm provides customized caffeine strategy for alertness
A web-based caffeine optimization tool successfully designs effective strategies to maximize alertness while avoiding excessive caffeine consumption, according to preliminary results from a new study.
New algorithm optimizes quantum computing problem-solving
Tohoku University researchers have developed an algorithm that enhances the ability of a Canadian-designed quantum computer to more efficiently find the best solution for complicated problems, according to a study published in the journal Scientific Reports.
Machine learning algorithm helps in the search for new drugs
Researchers have designed a machine learning algorithm for drug discovery which has been shown to be twice as efficient as the industry standard, which could accelerate the process of developing new treatments for disease.
Researchers create algorithm to predict PEDV outbreaks
Researchers from North Carolina State University have developed an algorithm that could give pig farms advance notice of porcine epidemic diarrhea virus (PEDV) outbreaks.
New algorithm provides a more detailed look at urban heat islands
Urban areas are warmer than the adjacent undeveloped land, a phenomenon known as the urban heat island effect.
More Algorithm News and Algorithm Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.