Nav: Home

UCI team uses machine learning to help tell which wildfires will burn out of control

September 17, 2019

Irvine, Calif., Sept. 17, 2019 - An interdisciplinary team of scientists at the University of California, Irvine has developed a new technique for predicting the final size of a wildfire from the moment of ignition.

Built around a machine learning algorithm, the model can help in forecasting whether a blaze is going to be small, medium or large by the time it has run its course - knowledge useful to those in charge of allocating scarce firefighting resources. The researchers' work is highlighted in a study published today in the International Journal of Wildland Fire.

"A useful analogy is to consider what makes something go viral in social media," said lead author Shane Coffield, a UCI doctoral student in Earth system science. "We can think about what properties of a specific tweet or post might make it blow up and become really popular - and how you might predict that at the moment it's posted or right before it's posted."

He and his colleagues applied that thinking to a hypothetical situation in which dozens of fires break out simultaneously. It sounds extreme, but this scenario has become all too common in recent years in parts of the western United States as climate change has resulted in hot and dry conditions on the ground that can put a region at high risk of ignition.

"Only a few of those fires are going to get really big and account for most of the burned area, so we have this new approach that's focused on identifying specific ignitions that pose the greatest risk of getting out of control," Coffield said.

The team used Alaska as a study area for the project because the state has been plagued over the past decade by a rash of concurrent fires in its boreal forests, threatening human health and vulnerable ecosystems.

At the core of the UCI scientists' model is a "decision tree" algorithm. By feeding it climate data and crucial details about atmospheric conditions and the types of vegetation present around the starting point of a fire, the researchers could predict the final size of a blaze 50 percent of the time. A key variable is the vapor pressure deficit - just how little moisture there is in the area - during the first six days of a fire's existence. A second major consideration for Alaskan forests is the percentage of trees of the black spruce variety.

"Black spruce, which are dominant in Alaska, have these long, droopy branches that are designed - from an evolutionary perspective - to wick up fire," said co-author James Randerson, professor and Ralph J. & Carol M. Cicerone Chair in Earth System Science at UCI. "Their seeds are adapted to do well in a post-fire environment, so their strategy is to kill off everything else around them during a fire to reduce competition for their offspring."

He said Coffield was able to show that the fraction of black spruce within a 2.5-mile radius of the ignition site is an important factor in judging how big a fire will grow.

One advantage of this new method is speed, Coffield said. The algorithm "learns" with each new data point and can quickly figure out the critical thresholds for identifying large fires. It's possible for people to do this manually or by running simulations on each different ignition, he said, but the machine learning system's statistical approach is "really much faster and more efficient, especially for considering multiple fires simultaneously."

Faced with a climate change-induced jump in the number of wildfires expected each season, state, county and local firefighting authorities could benefit from some updated tools and techniques, Randerson noted. In addition to potentially saving lives and protecting property and crucial infrastructure, fire suppression efforts will also become increasingly important in preserving the natural world.

"In places like Alaska, there's a need to limit the area affected by fire, because if we keep having these unusual, high-fire years, more carbon will be lost from the landscape, exacerbating warming," Randerson said. "If we let the fires run away, we could be in a situation where there's a lot of significant damage to both the climate system and ecosystems."
-end-
Other collaborators on this project - which was supported by UCI's Machine Learning and Physical Sciences program and the National Science Foundation - were Casey Graff, a Ph.D. student in computer science; Yang Chen, an assistant researcher in Earth system science; Efi Foufoula-Georgiou, Distinguished Professor of civil & environmental engineering; and Padhraic Smyth, Chancellor's Professor of computer science.

About the University of California, Irvine: Founded in 1965, UCI is the youngest member of the prestigious Association of American Universities. The campus has produced three Nobel laureates and is known for its academic achievement, premier research, innovation and anteater mascot. Led by Chancellor Howard Gillman, UCI has more than 36,000 students and offers 222 degree programs. It's located in one of the world's safest and most economically vibrant communities and is Orange County's second-largest employer, contributing $5 billion annually to the local economy. For more on UCI, visit http://www.uci.edu.

Media access: Radio programs/stations may, for a fee, use an on-campus ISDN line to interview UCI faculty and experts, subject to availability and university approval. For more UCI news, visit news.uci.edu. Additional resources for journalists may be found at communications.uci.edu/for-journalists.

NOTE TO EDITORS: PHOTO AVAILABLE AT https://news.uci.edu/2019/09/17/uci-team-uses-machine-learning-to-help-tell-which-wildfires-will-burn-out-of-control

Contact: Brian Bell
949-824-8249
bpbell@uci.edu

University of California - Irvine

Related Algorithm Articles:

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.
QUT algorithm could quash Twitter abuse of women
Online abuse targeting women, including threats of harm or sexual violence, has proliferated across all social media platforms but QUT researchers have developed a sophisticated statistical model to identify misogynistic content and help drum it out of the Twittersphere.
New learning algorithm should significantly expand the possible applications of AI
The e-prop learning method developed at Graz University of Technology forms the basis for drastically more energy-efficient hardware implementations of Artificial Intelligence.
Algorithm predicts risk for PTSD after traumatic injury
With high precision, a new algorithm predicts which patients treated for traumatic injuries in the emergency department will later develop posttraumatic stress disorder.
New algorithm uses artificial intelligence to help manage type 1 diabetes
Researchers and physicians at Oregon Health & Science University have designed a method to help people with type 1 diabetes better manage their glucose levels.
A new algorithm predicts the difficulty in fighting fire
The tool completes previous studies with new variables and could improve the ability to respond to forest fires.
New algorithm predicts optimal materials among all possible compounds
Skoltech researchers have offered a solution to the problem of searching for materials with required properties among all possible combinations of chemical elements.
New algorithm to help process biological images
Skoltech researchers have presented a new biological image processing method that accurately picks out specific biological objects in complex images.
Skoltech scientists break Google's quantum algorithm
In the near term, Google has devised new quantum enhanced algorithms that operate in the presence of realistic noise.
The most human algorithm
A team from the research group SEES:lab of the Department of Chemical Engineering of the Universitat Rovira I Virgili and ICREA has made a breakthrough with the development of a new algorithm that makes more accurate predictions and generates mathematical models that also make it possible to understand these predictions.
More Algorithm News and Algorithm Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.