Nav: Home

New study investigates the role of Tambora eruption in the 1816 'year without a summer'

September 17, 2019

A new study has estimated for the first time how the eruption of Mount Tambora changed the probability of the cold and wet European 'year without a summer' of 1816.

It found that the observed cold conditions were almost impossible without the eruption, and the wet conditions would have been less likely.

1816 recorded exceptionally low global temperatures, with central and Western Europe seeing a particularly cold and wet summer that led to widespread agricultural failures and famines.

The 1815 eruption of Mount Tambora in Indonesia has long been assumed to have been the cause, with a link made as early as 1913. Now, using historical data and modern modelling techniques, researchers led by the University of Edinburgh, UK, have estimated just how important the eruption was.

They publish their findings today in Environmental Research Letters.

The study's lead author, Dr Andrew Schurer, from the University of Edinburgh, said: "The eruption of Mount Tambora in April 1815 was among the most explosive of the last millennium. It had an enormous impact locally, devastating the island of Sumbawa. The eruption injected a huge amount of sulphur dioxide (SO2) into the stratosphere, which would have quickly spread across the world, oxidising to form sulphate aerosols.

"These volcanic aerosols reduce net shortwave radiation causing widespread, long lasting surface cooling. They also lead to a reduction in global rainfall, while wettening some dry regions, and causing dynamic changes in the large-scale circulation of both ocean and atmosphere."

The research team used early instrumental data, combined with new climate simulations from two different models, to conduct an event attribution analysis. Their aim was to determine if, and by how much, the volcanic forcing affected the probability of cold and wet conditions in this 'year without a summer'.

Their results, from summers with similar sea-level-pressure patterns to 1816, using both observations and unperturbed climate model simulations, show that the circulation state can reproduce the precipitation anomaly without external forcing, but only explains about a quarter of the anomalously cold conditions.

Dr Schurer said: "Including volcanic forcing in climate models can account for the cooling, and we estimate it increases the likelihood of the extremely cold temperatures by up to 100 times.

"Although the observed sea-level pressure pattern can account for much of the observed anomalously wet conditions, even without volcanic forcing, there is strong evidence in the model simulations that the volcanic eruption increases the chance of such a wet summer over Central Europe, by about 1.5 to three times.

"Mount Tambora played a dominant role in causing the observed cold conditions, and probably also contributed to the anomalously wet conditions. Without volcanic forcing, it is less likely to have been as wet and highly unlikely to have been as cold."
-end-


IOP Publishing

Related Climate Models Articles:

Multifactor models reveal worse picture of climate change impact on marine life
Rising ocean temperatures have long been linked to negative impacts for marine life, but a Florida State University team has found that the long-term outlook for many marine species is much more complex -- and possibly bleaker -- than scientists previously believed.
Airborne lidar system poised to improve accuracy of climate change models
Researchers have developed a laser-based system that can be used for airborne measurement of important atmospheric gases with unprecedented accuracy and resolution.
Pulses of sinking carbon reaching the deep sea are not captured in global climate models
A new study by MBARI scientists shows that pulses of sinking debris carry large amounts of carbon to the deep seafloor, but are poorly represented in global climate models.
Study brings new climate models of small star TRAPPIST 1's seven intriguing worlds
New research from a University of Washington-led team of astronomers gives updated climate models for the seven planets around the star TRAPPIST-1.
Current climate models underestimate warming by black carbon aerosol
Researchers in the School of Engineering & Applied Science have discovered a new, natural law that sheds light on the fundamental relationship between coated black carbon and light absorption.
Improving climate models to account for plant behavior yields 'goodish' news
Climate scientists have not been properly accounting for what plants do at night, and that, it turns out, is a mistake.
Climate models fail to simulate recent air-pressure changes over Greenland
Climatologists may be unable to accurately predict regional climate change over the North Atlantic because computer simulations have failed to include real data from the Greenland region over the last three decades -- and it could lead to regional climate predictions for the UK and parts of Europe being inaccurate.
Tropics are widening as predicted by climate models, research finds
Scientists have observed for years that the Earth's tropics are widening in connection with complex changes in climate and weather patterns.
'Abrupt thaw' of permafrost beneath lakes could significantly affect climate change models
Methane released by thawing permafrost from some Arctic lakes could significantly accelerate climate change, according to a new University of Alaska Fairbanks-led study.
Key factor may be missing from models that predict disease outbreaks from climate change
A study led by Indiana University suggests that computer models used to predict the spread of epidemics from climate change -- such as crop blights or disease outbreaks -- may not take into account an important factor in predicting their severity.
More Climate Models News and Climate Models Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.