Nav: Home

Time-restricted feeding improves health without altering the body's core clock

September 17, 2020

When it comes to metabolic health, it's not just what you eat, it's when you eat it. Studies have shown that one effective means of losing weight and tackling obesity is to reduce the number of hours in the day that you eat. Time-restricted feeding - otherwise known as intermittent fasting - has also been shown to improve health even before weight loss kicks in.

The biological explanation for the phenomenon remains poorly understood. So scientists from the University of Copenhagen, the Australian Catholic University and Karolinska Institutet investigated the body's early adaptations to time-restricted feeding. Their study identified a number of key changes in the genetic activity of muscles, as well as the content of muscle fats and proteins, which could explain the positive impact of time-restricted feeding.

Novel insights on short-term time-restricted feeding


The study is the first time scientists have examined the oscillations of metabolites in skeletal muscle and in blood, as well as gene expression in skeletal muscle after time-restricted feeding. By focusing on the short-term and early effects of time-restricted feeding, the goal was to disentangle the signals that govern health from those associated with weight loss.

"We observe that the rhythm of skeletal muscle core clock genes is unchanged by time-restricted feeding, suggesting that any differences are driven more by diet, rather than inherent rhythms," says Postdoc Leonidas Lundell, from the Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR) at the University of Copenhagen.

"We also see that the metabolite profile of skeletal muscle switches from being predominantly lipid based, to amino acid based, after time-restricted feeding. This coincides with changes in rhythmicity of amino acid transporters, indicating that part of the amino acid profile could be due to absorption from the blood."

Research Fellow Evelyn Parr from the Mary MacKillop Institute for Health Research at the Australian Catholic University, adds: "Our research is an important step towards understanding how time-restricted eating can improve metabolic health, while bridging the gap between animal models and human intervention studies. It was important to capture these early metabolic responses before assessing what changes might occur after a longer period following a time-restricted feeding pattern."

Eating behavior does not impact the body's core clock


In the study, 11 men with overweight/obesity were assigned one of two eating protocols for a period of five days, either unrestricted feeding, or eight-hours of time restricted feeding. On the fifth day, samples were taken every four hours for a full day. After a 10-day break, they repeated the experiment following the other eating protocol.

After each intervention, the team of scientists studied the gene expression in muscles, as well as the profile of metabolites - molecules that are formed through metabolic processes - in the blood and muscles.

They discovered that time-restricted feeding changed the rhythmic concentration of metabolites in blood and muscle. Time-restricted feeding also influenced the rhythmic expression of genes expressed by muscle, particularly those responsible for helping the transport of amino acids, the building blocks of proteins.

Critically, the study showed that time-restricted feeding did not alter the muscle's core clock - the cell's inbuilt metronome that regulates its daily cycle of activity. This suggests that the altered rhythmicity of metabolite and gene expression caused by time-restricted feeding could be responsible for the positive health impact.

"Our findings open new avenues for scientists who are interested in understanding the causal relationship between time-restricted feeding and improved metabolic health. These insights could help develop new therapies to improve the lives of people who live with obesity," says Professor Juleen Zierath from Karolinska Institutet and CBMR at the University of Copenhagen.
-end-
Read the full article here: Time-Restricted Feeding Alters Lipid and Amino Acid Metabolite Rhythmicity without Perturbing Clock Gene Expression

CONTACT


Postdoc Leonidas Lundell - Novo Nordisk Foundation Center for Basic Metabolic Research (CBMR), University of Copenhagen. Email: leo.lundell@sund.ku.dk

Research Fellow Evelyn Parr - Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University. Email: Evelyn.Parr@acu.edu.au

University of Copenhagen The Faculty of Health and Medical Sciences

Related Metabolites Articles:

Detection of PCBs and their metabolites (OH-PCBs) in the fetal brain of a Japanese macaque
This study selected the Japanese macaque (Macaca fuscata) as a model animal for the fetal transfer of OH-PCBs in humans, and revealed OH-PCB concentrations and their relationships in the maternal and fetal brains.
Study tracks human milk nutrients in infant microbiome
A new study in mice helps explain why gut microbiomes of breastfed infants can differ greatly from those of formula-fed infants.
Statistical analyses of plant metabolites allow solid testing of plant defense theories
High-throughput analyses of small substances in Nicotiana attenuata reveal that plants re-organize their metabolism to produce highly-specific defense metabolites after insect attack.
Terpenoids and aromatic compounds from bryophytes and their central nervous system activity
In this article, Agnieszka Ludwiczuk (Medical University of Lublin, Poland) and Yoshinori Asakawa (Tokushima Bunri University, Japan) review the chemistry of the liverworts, mosses, and hornworts.
Leaving its mark: How frailty impacts the blood
Fifteen blood metabolites are key for diagnosing the age-related disorder, frailty, new study finds.
Unlimited potential: Researchers found new ways to generate totipotent-like cells
Totipotency is set to become a key tool for research and future medical applications.
New study provides insight into the mechanisms of blood clots in cancer patients
Researchers have identified a potential new signaling pathway that may help further the understanding of blood clot formation in cancer patients and ultimately help prevent this complication from occurring.
Hormone therapy linked to decrease level of diabetes biomarkers
The Women's Health Initiative (WHI) remains one of the most highly quoted when debating the benefits and risks of hormone therapy.
University of Alberta researchers discover new biomarker for rare autoimmune disease
University of Alberta researchers have identified a unique biological marker that can be used to identify the presence of the rare autoimmune disease myasthenia gravis, predict the course of the disease and identify new, personalized treatments.
Scientists identified the metabolic features specific to the autistic brain
Skoltech scientists looked into the differences in the concentrations of multiple metabolites in healthy humans and individuals suffering from Autism Spectrum Disorder (ASD), gaining a deeper insight into the molecular processes that take place in the brain of autistic individuals.
More Metabolites News and Metabolites Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.