University of Cincinnati research produces different results from key China COVID-19 study

September 17, 2020

Early in the onset of the COVID-19 pandemic, a small study in China produced results that influenced subsequent research on the virus. Researchers at the University of Cincinnati used the same study parameters on a much larger patient population and reached completely different findings. The study was published in the journal Progress in Cardiovascular Diseases in mid-July.

The primary theory that emerged from the 12-patient study in China was that when the virus binds to the angiotensin converting enzyme 2 (ACE2), a protein on the surface of lung cells by which the virus is able to enter and infect the cell, it disrupts a vital hormonal system called the Renin-Angiotensin-Aldosterone System (RAAS).

"RAAS is the primary hormone system the body uses to regulate blood pressure and fluid volume status," says Brandon Henry, MD, with the Cardiac Intensive Care Unit at Cincinnati Children's Hospital Medical Center and co-author of the study. "It regulates your blood pressure, it regulates your fluids and it regulates your electrolytes."

Henry says much of the debate around COVID-19 research has been on the potential for danger from certain drugs, such as ACE inhibitors and angiotensin receptor blockers, because of the disruption of RAAS, while other researchers are testing those same drugs as therapies in patients with COVID-19.

"We were interested in trying to figure out what's actually going on with RAAS," Henry says. "There are a lot of clinical trials targeting RAAS, but no one has really examined if it is truly affected and disturbed in these patients. That was the focus of our investigation."

When COVID-19 first hit, anyone presenting to University of Cincinnati Medical Center with potential symptoms of the virus was isolated in a separate part of the emergency department called the "Respiratory ED." A lot of those people were getting blood work done, so researchers were able to pull a blood sample from those patients.

"This sets up a nice, natural experiment where all these patients are in the ED and they all have respiratory symptoms," says Justin Benoit, MD, assistant professor in the Department of Emergency Medicine at the UC College of Medicine, who ran the logistics of the study.

"Some have COVID, some do not, and we don't know who does or doesn't have COVID when you're drawing the blood. Then you can start looking for differences. Since they all present similarly, when you find differences between these patient groups, you might be able to attribute that to COVID."

Benoit says the researchers' goal was to try to find pathways that are altered in patients with COVID-19 that have specific pharmacological targets that could be used in subsequent studies.

"We were trying to inform clinical trials because there are a lot of trials being proposed or up and running at UC and in other places, but most are based on theory and conjecture and not necessarily based on actual data," Benoit says.

Henry says they wanted to learn more about the main hypothesis on how COVID-19 causes severe disease in some patients. The enzyme called ACE2 breaks down a peptide called angiotensin II (AngII), which causes inflammation and restricts the vessels within the lung in models of people with acute respiratory distress syndrome (ARDS), according to Henry.

"The ACE2 enzyme that the virus uses takes AngII and converts it into another peptide called angiotensin (1-7)," says Henry. "The idea is that when the virus binds to the enzyme, its activity stops and levels of AngII start to rise dramatically. That's what propagates the severity of the infection and causes people to develop ARDS, or so the theory goes."

Reducing AngII levels is also the goal of the most commonly prescribed medication in the United States, ACE inhibitors such as enalapril or lisinopril for hypertension.

The research team measured levels of this peptide in COVID-19 patients and discovered that AngII levels were normal. Henry says based on the results of the 12-person study in China, they expected to see AngII levels that were very high, but that was not what they found in their study of 190 patients.

In a recently published follow-up study in the Journal of Medical Virology, the research team reported low levels of angiotensin (1-7) as compared to healthy controls.

"This is among the first substantial evidence supporting the hypothesis of a potential inhibition of ACE2 activity due to virus binding," Henry stated. "As angiotensin (1-7) is anti-inflammatory peptide that also dilates the vessels, low levels of this peptide due to [the coronavirus] may promote ARDS. As such, supplementation with synthetic angiotensin (1-7) may be a potential therapeutic target for treating COVID-19."

The blood samples collected in the UC Medical Center Emergency Department were analyzed by the lab run by Stefanie Benoit, MD, in the Division of Nephrology and Hypertension, wife of Justin, and co-author of the study. She says the speed at which this trial got up and running is unprecedented.

"We have dismantled a mountain and moved it 30 feet and reassembled it in three months," she says. "Everybody stepped up, it was just amazing. The lab workers got things done in two days that normally take two weeks."

Stefanie says one important aspect of this study is that it produced data that can hopefully help guide further research into the pathophysiology of COVID-19.

"We could not reproduce the data that came out of China," she says. "Our data is completely different, in the same patient population, measured at the same time, measured in the same laboratory technique. That small study is what all of this was built off of. It's kind of a warning or reminder that we are doing things now in ways they've never been done before, so we have to be thoughtful about when data comes out, what it means and how we use it."

Benoit says he was very impressed by the fast response to the need for COVID-19 research by the UC College of Medicine and its leadership, including Andrew Filak, MD, the dean of the college. The research was funded by a $50,000 grant from the UC College of Medicine Special Coronavirus Research Pilot Grant Program that was announced in early April. In all, $425,000 was awarded to 11 projects through the program which was established to rapidly support the development of innovative studies that will contribute significantly to the knowledge of COVID-19 biology or pathology.
-end-


University of Cincinnati

Related Blood Pressure Articles from Brightsurf:

Children who take steroids at increased risk for diabetes, high blood pressure, blood clots
Children who take oral steroids to treat asthma or autoimmune diseases have an increased risk of diabetes, high blood pressure, and blood clots, according to Rutgers researchers.

High blood pressure treatment linked to less risk for drop in blood pressure upon standing
Treatment to lower blood pressure did not increase and may decrease the risk of extreme drops in blood pressure upon standing from a sitting position.

Changes in blood pressure control over 2 decades among US adults with high blood pressure
National survey data were used to examine how blood pressure control changed overall among U.S. adults with high blood pressure between 1999-2000 and 2017-2018 and by age, race, insurance type and access to health care.

Transient increase in blood pressure promotes some blood vessel growth
Blood vessels are the body's transportation system, carrying oxygen and nutrients to cells and whisking away waste.

Effect of reducing blood pressure medications on blood pressure control in older adults
Whether the amount of blood pressure medications taken by older adults could be reduced safely and without a significant change in short-term blood pressure control was the objective of this randomized clinical trial that included 534 adults 80 and older.

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.

Here's something that will raise your blood pressure
The apelin receptor (APJ) has been presumed to play an important role in the contraction of blood vessels involved in blood pressure regulation.

New strategy for treating high blood pressure
The key to treating blood pressure might lie in people who are 'resistant' to developing high blood pressure even when they eat high salt diets, shows new research published today in Experimental Physiology.

Arm cuff blood pressure measurements may fall short for predicting heart disease risk in some people with resistant high blood pressure
A measurement of central blood pressure in people with difficult-to-treat high blood pressure could help reduce risk of heart disease better than traditional arm cuff readings for some patients, according to preliminary research presented at the American Heart Association's Hypertension 2019 Scientific Sessions.

Heating pads may lower blood pressure in people with high blood pressure when lying down
In people with supine hypertension due to autonomic failure, a condition that increases blood pressure when lying down, overnight heat therapy significantly decreased systolic blood pressure compared to a placebo.

Read More: Blood Pressure News and Blood Pressure Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.