PET/MRI improves lesion detection, reduces radiation exposure

September 17, 2020

Reston, VA--A single-center observational study of more than 1,000 oncological examinations has demonstrated that positron emission tomography/magnetic resonance imaging (PET/MRI) facilitates cancer staging as well as PET/computed tomography (PET/CT) and improves lesion detectability in select cancers, potentially helping to promote fast, efficient local and whole-body staging in one step. The study, published in The Journal of Nuclear Medicine, also shows that PET/MRI significantly reduces overall radiation exposure when compared to PET/CT--of particular benefit to pediatric and adolescent patients.

While PET/CT is known as the diagnostic cornerstone in various oncologic imaging guidelines due to its sensitivity and high-resolution morphologic imaging, PET/MRI has higher soft-tissue contrast and lower radiation exposure. However, clinical data for PET/MRI are scarce due to the lack of clinical studies with relevant sample sizes.

In the observational study, a total of 1,003 whole-body PET/MRI examinations on 918 patients from a single center were compared with whole-body PET/CT examinations of the same patients. The oncological indications included lung cancer, gastrointestinal cancer or neuroendocrine cancer, gynecologic or breast cancer, prostate cancer, lymphoma, melanoma, head and neck cancer, cancer of unknown primary and malignant bone disease.

Board-certified nuclear medicine physicians and radiologists evaluated the examinations to identify additional findings on PET/MRI that were missing on PET/CT and probable diagnoses; additional but indeterminate findings on PET/MRI requiring additional examinations or follow-up; classification of indeterminate findings on PET/CT by PET/MRI; and missed findings on PET/MRI in comparison to PET/CT. Effective dose of both modalities was also investigated.

Additional information on PET/MRI was reported for 26.3 percent of examinations, compared with PET/CT. Of these, additional malignant findings were detected in 5.3 percent, leading to a change in TNM staging in 2.9 percent due to PET/MRI. Definite lesion classification of indeterminate PET/CT findings was possible in 11.1 percent with PET/MRI. In 2.9 percent, lesions detected on PET/CT were not visible on PET/MRI. Malignant lesions were missed in 1.2 percent on PET/MRI, leading to a change in TNM staging in 0.5 percent. The estimated mean effective dose for whole-body PET/CT amounted to 17.6 ± 8.7 mSv, in comparison to 3.6 ± 1.4 mSv for PET/MRI, resulting in a potential dose reduction of 79.6 percent.

"Due to the higher soft tissue contrast, PET/MRI improves lesion detection and reduces the need for additional examinations in comparison to PET/CT," said Benedikt Schaarschmidt, MD, professor and radiologist at the University Hospital Essen in Essen, Germany. "Especially in younger patients who need repeated diagnostic procedures, our data advocate the use of PET/MRI due to the markedly reduced radiation exposure of PET/MRI when compared to PET/CT."

He continued, "Hybrid imaging examinations are now part of complex diagnostic algorithms in multiple cancer types. Based on our data, PET/MRI could be an important adjunct to PET/CT by providing diagnostic advantages and improving diagnostic algorithms in numerous cancers at the same time. Furthermore, the markedly reduced radiation exposure of PET/MRI could lead to a more frequent use of this examination in oncological patients, most notably for treatment monitoring."
-end-
The authors of "PET/MRI Versus PET/CT for Whole-Body Staging: Results from a Single-Center Observational Study on 1,003 Sequential Examinations" include Ole Martin, Julian Kirchner, Philipp Heusch and Gerald Antoch, Department of Diagnostic and Interventional Radiology, University of Dusseldorf, Medical Faculty, Dusseldorf, Germany; Benedikt M. Schaarschmidt, Saravanabavaan Suntharalingam, Johannes Grueneisen, Aydin Demircioglu, Michael Forsting and Lale Umutlu, Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Harold H. Quick, Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany, and High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; and Ken Herrmann, Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.

This study was made available online in December 2019 ahead of final publication in print in August 2020.

Please visit the SNMMI Media Center for more information about molecular imaging and precision imaging. To schedule an interview with the researchers, please contact Rebecca Maxey at (703) 652-6772 or rmaxey@snmmi.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Journal of Nuclear Medicine (JNM) is the world's leading nuclear medicine, molecular imaging and theranostics journal, accessed close to 10 million times each year by practitioners around the globe, providing them with the information they need to advance this rapidly expanding field. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

JNM is published by the Society of Nuclear Medicine and Molecular Imaging (SNMMI), an international scientific and medical organization dedicated to advancing nuclear medicine and molecular imaging--precision medicine that allows diagnosis and treatment to be tailored to individual patients in order to achieve the best possible outcomes. For more information, visit http://www.snmmi.org.

Society of Nuclear Medicine and Molecular Imaging

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.