Algorithms uncover cancers' hidden genetic losses and gains

September 17, 2020

Understanding the specific mutations that contribute to different forms of cancer is critical to improving diagnosis and treatment. But limitations in DNA sequencing technology make it difficult to detect some major mutations often linked to cancer, such as the loss or duplication of parts of chromosomes.

Now, methods developed by Princeton computer scientists will allow researchers to more accurately identify these mutations in cancerous tissue, yielding a clearer picture of the evolution and spread of tumors than was previously possible.

Losses or duplications in chromosomes are known to occur in most solid tumors, such as ovarian, pancreatic, breast and prostate tumors. As cells grow and divide, slip-ups in the processes of copying and separating DNA can also lead to the deletion or duplication of individual genes on chromosomes, or the duplication of a cell's entire genome -- all 23 pairs of human chromosomes. These changes can activate cancer-promoting genes or inactivate genes that suppress cancerous growth.

"They're important driver events in cancer in their own right, and they interact with other types of mutations in cancer," said Ben Raphael, a professor of computer science who co-authored the studies with Simone Zaccaria, a former postdoctoral research associate at Princeton.

Although medical science has recognized the mutations as critical parts of cancer development, identifying these losses or duplications in chromosomes is difficult with current technology. That is because DNA sequencing technologies cannot read whole chromosomes from end to end. Instead, the technologies allow researchers to sequence snippets of the chromosome, from which they assemble a picture of the entire strand. The weakness of this method is that it cannot easily identify gaps in the DNA strand or areas of duplication.

To address this problem, Raphael and Zaccaria created new mathematical tools that allow scientists to search the vast collection of DNA snippets and uncover whether there are either missing pieces or duplicates. The algorithms, dubbed Nature Biotechnology.

"All the cells you are sequencing come from the same evolutionary process, so you can put the sequences together in a way that leverages this shared information," said Zaccaria, who will soon begin positions as a principal research fellow at the University College London Cancer Institute and a visiting research scientist at London's Francis Crick Institute.

"The reality is that the technology for sequencing DNA in individual cells has limitations, and algorithms help researchers overcome these limitations," said Raphael. "Ideally, both the sequencing technologies and the algorithms will continue to improve in tandem."

Raphael's research group has multiple collaborations with cancer researchers who are beginning to apply the HATCHet and CHISEL algorithms to sequences from various types of patient samples and experimental models.
The work was supported by the U.S. National Institutes of Health, the National Science Foundation, and the Chan Zuckerberg Initiative; as well as the O'Brien Family Fund for Health Research and the Wilke Family Fund for Innovation, both awarded by the Princeton School of Engineering and Applied Science.

Princeton University, Engineering School

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to