Scientists sound alarm on plastic pollution

September 17, 2020

In January 2018, China stopped accepting most plastic recyclables from Western nations. Within days, there was no hiding just how much plastic nations were producing and consuming. Piles of plastic sprung up in Britain, Europe, Canada, the United States, and elsewhere. Other Eastern nations began banning the import of plastic waste. Governments worldwide are now scrambling for solutions to mitigate the growing problem of plastic pollution.

Now a new study shows that despite global commitments to address plastic pollution, growth in plastic waste, or "plastics emissions" continues to outpace reduction. What's more, the study shows that even if governments around the world adhere to their ambitious commitments to curb plastic pollution, annual plastic emissions may increase more than six-fold by 2030.

The study, "Predicted Growth in Plastic Waste Exceeds Efforts to Mitigate Plastic Pollution," published in the Sept. 18 issue of the journal Science, evaluated the level of effort needed to achieve a targeted global reduction in plastic pollution.

This is the first global analysis of the magnitude of the plastic pollution problem or an analysis of the relative impact of interventions, like banning plastic bags and straws, said Leah Gerber, professor of conservation science in Arizona State University's School of Life Sciences and co-investigator on the study.

Plastics are slow to degrade, and even when they do, bits of them, known as microplastics, make their way into the aquatic food chain, and eventually into humans. The Great Pacific Garbage Patch, located halfway between California and Hawaii, embodies the growing problem of plastic pollution. The patch is said to cover 1.6 million square kilometers, an area twice the size of Texas.

It's estimated that eight million metric tons of plastic waste enters the world's ocean, lakes and rivers annually. The new study, based on mathematical models, estimates that by 2030, annual plastic waste of 173 countries may increase to 53 metric tons.

The study modeled future scenarios to achieve a global reduction target of less than 8 metric tons by 2030 using existing mitigation strategies: reducing plastic waste, which includes bans on plastic; improving waste management; and environmental clean-up.

To reach that goal, the study found that a 25% to 40% reduction in plastic waste would be required; plastic waste management would have to increase from 6% to 60% in low-income economies; and a clean-up of 40% of annual plastic emissions would be needed.

The study's findings emphasize that unless growth in plastic production and use is halted (an unlikely scenario), a fundamental transformation of the plastics economy is essential; that is, where end-of-life plastic products are valued rather than discarded as waste.

"There's a lot of popular attention toward clean up, but there hasn't been as much attention to the fact that we're still producing large quantities of plastic," said Gerber. "And where there's not good infrastructure, that plastic is making its way into marine and aquatic habitats."

The study's authors suggest that to achieve a substantial reduction in global plastic emissions requires meaningful policy change. Such changes include reducing or eliminating unnecessary plastics; establishing global limits for new plastics production; creating global standards that ensure plastics are recoverable and recyclable; and developing and scaling plastic processing and recycling technologies.

"In the U.S. we're huge consumers of single-use plastic," said Gerber. "I'm hopeful that our findings will get people to rethink these consumption patterns. Even here in Arizona, the choices we make impact the future of our oceans."
-end-
The study's lead authors are Stephanie Borrelle and David H. Smith, both postdoctoral research fellows at the University of Toronto, and Chelsea Rochman, assistant professor of ecology and evolutionary biology, University of Toronto.

In addition to Gerber, ASU researchers on the study include Beth Polidoro, associate professor of Environmental Chemistry and Aquatic Conservation at West campus, and doctoral students Erin Murphy and Miranda Bernard.

This work was supported by the National Socio-Environmental Synthesis Center with funding received from the National Science Foundation.

Arizona State University

Related Plastics Articles from Brightsurf:

Bioplastics no safer than other plastics
Bioplastics contain substances that are as toxic as those in ordinary plastics.

A first-of-its-kind catalyst mimics natural processes to break down plastics
A team of scientists led by the U.S. Department of Energy's Ames Laboratory has developed a first-of-its-kind catalyst that is able to process polyolefin plastics, types of polymers widely used in things like plastic grocery bags, milk jugs, shampoo bottles, toys, and food containers.

Plastics, waste and recycling: It's not just a packaging problem
Discussions of the growing plastic waste problem often focus on reducing the volume of single-use plastic packaging items such as bags, bottles, tubs and films.

'Critical' questions over disease risks from ocean plastics
Key knowledge gaps exist in our understanding of how ocean microplastics transport bacteria and viruses -- and whether this affects the health of humans and animals, researchers say.

Plastics, pathogens and baby formula: What's in your shellfish?
The first landmark study using next-generation technology to comprehensively examine contaminants in oysters in Myanmar reveals alarming findings: the widespread presence of human bacterial pathogens and human-derived microdebris materials, including plastics, kerosene, paint, talc and milk supplement powders.

Chemists make tough plastics recyclable
MIT chemists have developed a way to modify thermoset plastics with a chemical linker that makes it much easier to recycle them, but still allows them to retain their mechanical strength.

The many lifetimes of plastics
Many of us have seen informational posters at parks or aquariums specifying how long plastics bags, bottles, and other products last in the environment.

Recycling plastics together, simple and fast
Scientists successfully blended different types of plastics to be recycled together, providing a solution to the environmental problem of plastic waste and adding economic value to plastic materials.

Water replaces toxins: Green production of plastics
A new way to synthesize polymers, called hydrothermal synthesis, can be used to produce important high-performance materials in a way which is much better for the environment.

Untwisting plastics for charging internet-of-things devices
Scientists are unraveling the properties of electricity-conducting plastics so they can be used in future energy-harvesting devices.

Read More: Plastics News and Plastics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.