NASA confirms North Pole ozone hole trigger

September 18, 2001

NASA researchers using 22 years of satellite-derived data have confirmed a theory that the strength of "long waves," bands of atmospheric energy that circle the earth, regulate the temperatures in the upper atmosphere of the Arctic, and play a role in controlling ozone losses in the stratosphere. These findings will also help scientists predict stratospheric ozone loss in the future.

These long waves affect the atmospheric circulation in the Arctic by strengthening it and warming temperatures, or weakening it and cooling temperatures. Colder temperatures cause polar clouds to form, which lead to chemical reactions that affect the chemical form of chlorine in the stratosphere. In certain chemical forms, chlorine can deplete the ozone layer. One theory is that greenhouse gases may be responsible for decreasing the number of long waves that enter the stratosphere, which then thins the ozone layer.

Just as the weather at the Earth's surface varies a lot from one year to the next, so can the weather in the stratosphere. For instance, there were some years like 1984, in which it didn't get cold enough in the Arctic stratosphere for significant ozone loss to occur. "During that year, we saw stronger and more frequent waves around the world, that acted as the fuel to a heat engine in the Arctic, and kept the polar stratosphere from becoming cold enough for great ozone losses," said Paul Newman, lead author of the study and an atmospheric scientist at NASA's Goddard Space Flight Center, in Greenbelt, Md.

"Other years, like 1997, weaker, and less frequent waves reduced the effectiveness of the Arctic heat engine and cooled the stratosphere, making conditions just right for ozone destruction," Newman said. The paper appears in the September 16 issue of Journal of Geophysical Research-Atmospheres.

The temperature of the lower level of the stratosphere over the poles is also controlled by the change in seasons from winter to spring, and by gases such as ozone, water vapor and carbon dioxide.

A long wave or planetary wave is like a band of energy, thousands of miles in length that flows eastward in the middle latitudes of the upper atmosphere, and circles the world. It resembles a series of ocean waves with ridges (the high points) and troughs (the low points). Typically, at any given time, there are between one and three of these waves looping around the Earth.

These long waves move up from the lower atmosphere (troposphere) into the stratosphere, where they dissipate. When these waves break up in the upper atmosphere they produce a warming of the polar region. So, when more waves are present to break apart, the stratosphere becomes warmer. When fewer waves rise up and dissipate, the stratosphere cools, and the more ozone loss occurs.

Weaker "long waves" over the course of the Northern Hemisphere's winter generate colder Arctic upper air temperatures during spring. By knowing the cause of colder temperatures, scientists can better predict what will happen to the ozone layer.

The temperature of the polar lower stratosphere during March is the key in understanding polar ozone losses - and the temperature at that time is usually driven by the strength and duration of "planetary waves" spreading into the stratosphere.

This discovery provides a key test of climate models that are used to predict polar ozone levels. "This then lends itself to adjusting climate models, and increasing their accuracy, which means scientists will have a better way to predict climate change in the future," Newman said.

The stratosphere is an atmospheric layer about 6 to 30 miles above the Earth's surface where the ozone layer is found. The ozone layer prevents the sun's harmful ultra-violet radiation from reaching the Earth's surface. Ultra-violet radiation is a primary cause of skin cancer. Without upper-level ozone, life on Earth would be non-existent.

The research used temperature measurements of the stratosphere from the Upper Atmospheric Research Satellite (UARS).
More information and images available at:

NASA/Goddard Space Flight Center

Related Ozone Articles from Brightsurf:

Investigating the causes of the ozone levels in the Valderejo Nature Reserve
The UPV/EHU's Atmospheric Research Group (GIA) has presented a database comprising over 60 volatile organic compounds (VOC) measured continuously over the last ten years in the Valderejo Nature Reserve (Álava, Basque Country).

FSU Research: Despite less ozone pollution, not all plants benefit
Policies and new technologies have reduced emissions of precursor gases that lead to ozone air pollution, but despite those improvements, the amount of ozone that plants are taking in has not followed the same trend, according to Florida State University researchers.

Iodine may slow ozone layer recovery
Air pollution and iodine from the ocean contribute to damage of Earth's ozone layer.

Ozone threat from climate change
We know the recent extreme heat is something that we can expect more of as a result of increasing temperatures due to climate change.

Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.

How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.

New threat to ozone recovery
A new MIT study, published in Nature Geoscience, identifies another threat to the ozone layer's recovery: chloroform -- a colorless, sweet-smelling compound that is primarily used in the manufacturing of products such as Teflon and various refrigerants.

Ozone hole modest despite optimum conditions for ozone depletion
The ozone hole that forms in the upper atmosphere over Antarctica each September was slightly above average size in 2018, NOAA and NASA scientists reported today.

Increased UV from ozone depletion sterilizes trees
UC Berkeley paleobotanists put dwarf, bonsai pine trees in growth chambers and subjected them to up to 13 times the UV-B radiation Earth experiences today, simulating conditions that likely existed 252 million years ago during the planet's worst mass extinction.

Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing
The ozone layer -- which protects us from harmful ultraviolet radiation -- is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes.

Read More: Ozone News and Ozone Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to