Built-in eyeshade offers clue to prehistoric past

September 18, 2003

A new, rare fossil of a prehistoric sea creature bearing eyes like "twin towers" sheds light on how it lived more than 395 million years ago, says a University of Alberta researcher.

Dr. Brian Chatterton, one of the world's leading experts on trilobites and a professor in the U of A's Faculty of Science, reports on the discovery of the only known complete specimen of a particular trilobite in this week's edition of the prestigious scientific journal Science.

Trilobites were among the most active animals in the sea--they ran around the sea floor and occasionally burrowed in the sediment or swam around. They had eyes similar to those of their distant relatives, the insects, but they also had antennae, making it possible to see and touch the world around them.

Chatterton was recently contacted by Richard Fortey of the Natural History Museum in London after a commercial dealer offered the specimen--phacopoid trilobite Erbenochile----found in Morocco, for sale. Fortey turned to Chatterton to learn exactly what and how rare the specimen was. They soon discovered that its several exaggerated and unique features made it of "more than normal interest" to paleontologists.

Unlike other trilobites eyes, the giant eyes on this specimen stand up like twin towers or have extensions of their palpebral lobes that stretch outward above the eye.

"These lobes would have acted like a lens shade on a camera or a baseball hat brim on humans. They prevented unwanted light from entering the lenses which would otherwise bounce around and cause a fuzziness in the image seen by the trilobite animal," said Chatterton. "These trilobites lived at a time--395 million years ago--when large predatory fishes capable of crushing shelled animals were becoming common for the first time, and perhaps acute vision allowed these trilobites to escape or hide from being eaten."

Despite some suggestion that the species was nocturnal, this finding shows that the trilobite may have operated during daylight hours. Distinct and unusual features seldom appear in evolution as random occurrences without offering some practical use, said Chatterton.

Since most of our knowledge of the world at the time of this trilobite is based on the fossils preserved on what was the sea floor of the ancient continental shelves, this discovery is an interesting new feature that helps us understand how some animals lived centuries ago.
-end-


University of Alberta

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.