Saving dirt: Pristine soils losing out to agriculture and development

September 18, 2003

Berkeley - A new study by researchers at the University of California, Berkeley, may lead some people to rethink the phrase, "common as dirt." A paper published in the journal Ecosystems finds that certain soils - like certain plants and animals - are becoming increasingly rare, with some at risk of becoming extinct.

In agricultural regions, such as in the Midwest, up to 80 percent of soils considered rare have been reduced to less than half of their original extent. That is, more than half of the soil has been converted to agriculture or urban uses.

"Over the past two centuries, we have reconfigured part of a continent to the point where today's landscape is almost unrecognizable from its natural state," said Ronald Amundson, professor of ecosystem sciences at UC Berkeley's College of Natural Resources and lead author of the paper. "The Great Plains used to be characterized by tall grasses and prairies. They have now been replaced by crops and housing tracts."

Like their plant and animal counterparts, soils have their own taxonomy. In the United States, there are 11 soil orders that are ultimately divided into 13,129 series. A soil series is comparable to a plant or animal species. Soils that comprise less than 25,000 acres are considered rare. What the report calls "rare-unique" soils exist only in one state and comprise less than 25,000 acres. The researchers considered a rare or rare-unique soil endangered if more than half of its area was tilled, excavated or otherwise disturbed.

The researchers found 508 endangered soil series in the United States. Six states have more than half of their rare soil series in an endangered state, with Indiana leading the group at 82 percent, followed closely by Iowa at 81 percent. Most of the soil danger hotspots reside in the country's agricultural heartland.

The researchers also found that 31 soils are effectively extinct because they have been nearly completely converted to agricultural or land use.

Why the concern over undisturbed, virgin soil? As the foundation of terrestrial ecosystems, soils form an intimate bond with the plants and animals they support, said Amundson. Rare plants have evolved to inhabit rare soils, such as those that are highly acidic or low in nutrients. An area of very ancient and nutrient-poor soils near the town of Ione, Calif., for example, provides the habitat for four species of endemic plants, including the Amador Rock Rose and the Irish Hill buckwheat. The plants are listed in the "Inventory of Rare and Endangered Vascular Plants of California," and are not found naturally anywhere else in the country.

In essence, soil diversity is tied to biological diversity, said Amundson.

But tilling the soil changes its biogeochemistry by stimulating microorganisms to quickly metabolize the soil's organic matter for food. The disturbance of the soil impacts the plants and animals that depend upon it, the researchers said.

"Soil that has been cultivated is like an animal that has been domesticated," said Amundson. "It retains some resemblance to its wild or native ancestor, but there are enormous and profound changes in its characteristics."

Research has also shown that the process of digging up soil produces carbon dioxide, which contributes to the greenhouse gases in the atmosphere. "Soil has more carbon in the form of organic matter than all the plants in the world," said Amundson.

Cultivating the soil breaks up the organic matter, making it available as food for microorganisms such as bacteria and fungi. The process of breaking down the organic matter releases a significant amount of carbon dioxide in the atmosphere. Twenty percent of the carbon dioxide added to the atmosphere by human activity is related to land-use activities such as burning forests and farming, said Amundson.

To conduct this study, Amundon and the other researchers combined data from digitized maps on soil types compiled by the U.S. National Resource Conservation Service with information from maps of agricultural and urban growth provided by the U.S. Geological Survey and the Environmental Protection Agency.

"Never before has soil in the United States been analyzed in such a way," said Peng Gong, UC Berkeley professor of ecosystem sciences and co-author of the paper. "Our study is the country's first quantitative analysis of soil diversity."

Standing at the forefront of soil activism, the researchers argue for the preservation of rare and unique soils. "Soil might harbor microbial life that has benefits unknown to us today," said Amundson.

The research of the late soil scientist Selman Waksman may be one of the best examples of the contributions possible from soil research. Observing that soils do not become contaminated when diseased bodies are buried in the ground, Waksman set out to isolate soil microorganisms that produced natural antibiotics. His research led to the discovery of streptomycin, the first antibiotic that was effective in treating tuberculosis, for which he was awarded the Nobel Prize in Physiology or Medicine in 1952.

"We certainly need land to farm and develop. I'm not advocating the discontinuation of agricultural expansion," said Amundson. "But I think it'd be fair to set aside modest areas of these remaining natural landscapes for study and contemplation."

"Some of these soils developed over thousands to millions of years," added Gong. "We can destroy that in a few hours. It's a preservation issue. We need to save it for future generations."
-end-
The study was also co-authored by Yin Yang Guo, a former post-doctoral researcher at UC Berkeley's Department of Environmental Science, Policy and Management. The Kearney Foundation of Soil Science funded the research.

University of California - Berkeley

Related Microorganisms Articles from Brightsurf:

A more resistant material against microorganisms is created to restore cultural heritage
The study was performed by a research team at the University Research Institute into Fine Chemistry and Nanochemistry at the University of Cordoba and Seville's Institute of Natural Resources and Agrobiology of the Spanish National Research Council

NYUAD study finds gene targets to combat microorganisms binding to underwater surfaces
A group of synthetic biologists at NYU Abu Dhabi (NYUAD) have identified new genetic targets that could lead to safe, biologically-based approaches to combat marine biofouling - the process of sea-based microorganisms, plants, or algae binding to underwater surfaces.

Less flocking behavior among microorganisms reduces the risk of being eaten
When algae and bacteria with different swimming gaits gather in large groups, their flocking behaviour diminishes, something that may reduce the risk of falling victim to aquatic predators.

Are vultures spreaders of microbes that put human health at risk?
A new analysis published in IBIS examines whether bacteria, viruses, and other microorganisms that are present in wild vultures cause disease in the birds, and whether vultures play a role in spreading or preventing infectious diseases to humans and other animal species.

Timing key in understanding plant microbiomes
Oregon State University researchers have made a key advance in understanding how timing impacts the way microorganisms colonize plants, a step that could provide farmers an important tool to boost agricultural production.

Advances in the production of minor ginsenosides using microorganisms and their enzymes
Advances in the Production of Minor Ginsenosides Using Microorganisms and Their Enzymes - BIO Integration https://bio-integration.org/wp-content/uploads/2020/05/bioi20200007.pdf Announcing a new article publication for BIO Integration journal.

Study shows how microorganisms survive in harsh environments
In northern Chile's Atacama Desert, one of the driest places on Earth, microorganisms are able to eke out an existence by extracting water from the rocks they colonize.

Microorganisms in parched regions extract needed water from colonized rocks
Cyanobacteria living in rocks in Chile's Atacama Desert extract water from the minerals they colonize and, in doing so, change the phase of the material from gypsum to anhydrite.

Verticillium wilt fungus killing millions of trees is actually an army of microorganisms
A research project studied the microbiome of olive tree roots and concluded that Verticillium wilt is fueled by a community of microorganisms that team up to attack plants, thus reassessing the way this problem is dealt with

New drug formulation could treat Candida infections
With antimicrobial resistance (AMR) increasing around the world, new research led by the University of Bristol has shown a new drug formulation could possibly be used in antifungal treatments against Candida infections.

Read More: Microorganisms News and Microorganisms Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.