Diamonds are a laser's best friend

September 18, 2009

WASHINGTON, Sept. 18--Tomorrow's lasers may come with a bit of bling, thanks to a new technology that uses man-made diamonds to enhance the power and capabilities of lasers. Researchers in Australia have now demonstrated the first laser built with diamonds that has comparable efficiency to lasers built with other materials.

This "Raman" laser has applications that range from defense technologies and trace gas detectors to medical devices and satellite mapping of greenhouse gases. The special properties of diamonds offer a stepping stone to more powerful lasers that can be optimized to produce laser light colors currently unavailable to existing technologies.

Richard Mildren of Macqaurie University in Sydney, New South Wales, Australia and Alexander Sabella of the Defence Science and Technology Organisation in Edinburgh, South Australia developed the device, described in the current issue of the Optical Society (OSA) journal Optics Letters.

"Diamond is quite a bizarre material with unique and extreme properties," says Mildren. "Single crystal diamond is very new on the scene as an optical and laser material."

Existing Raman lasers typically use crystals of silicon, barium nitrate or metal tungstate to amplify light created by a pump laser. Compared to these materials, diamond has a higher optical gain (ability to amplify) as well as a greater thermal conductivity (ability to conduct heat), making it ideal for high-power applications. Diamond crystals also can be made to generate a wider variety of wavelengths of light, each of which have its own applications--from ultraviolet light at 225 nanometers to far-infrared light at 100 microns.

In 2008, Mildren built the first diamond Raman laser, reported in Optics Express, OSA's open-access journal. This proof-of-principle device was only 20 percent as efficient as the best barium nitrate lasers.

In the past year, the industrial process used to grow these artificial diamonds--chemical vapor deposition--has greatly improved, allowing the synthesis of crystals with a lower birefringence (less likely to split apart an incoming beam of light).

"The material is now good enough to start moving into applications that are of real practical interest," says Mildren.

Now Mildren's current laser, which uses a 6.7 mm long diamond, achieves an efficiency of 63.5 percent, which is competitive with the 65 percent efficiency achieved by existing Raman lasers. The device is currently optimized to produce yellow laser light useful for medical applications such as eye surgery, and other applications should be possible with different optimization schemes.
-end-
Paper: "Highly efficient diamond Raman laser," R.P. Mildren et al., Optics Letters, Vol. 34, Issue 18, pp. 2811-2813. http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-34-18-2811

About OSA

Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

The Optical Society

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.