Nanoparticles cause brain injury in fish

September 18, 2011

Scientists at the University of Plymouth have shown, for the first time in an animal, that nanoparticles have a detrimental effect on the brain and other parts of the central nervous system.

They subjected rainbow trout to titanium oxide nanoparticles which are widely used as a whitening agent in many products including paints, some personal care products, and with applications being considered for the food industry. They found that the particles caused vacuoles (holes) to form in parts of the brain and for nerve cells in the brain to die. Although some effects of nanoparticles have been shown previously in cell cultures and other in vitro systems this is the first time it has been confirmed in a live vertebrate.

The results will be presented at the "6th International meeting on the Environmental Effects on Nanoparticles and Nanomaterials" (21st - 23rd September) at the Royal Society in London.

"It is not certain at this stage of the research whether these effects are caused by the nanoparticles entering the brain or whether it is a secondary effect of nanoparticle chemistry or reactivity", says Professor Richard Handy, lead scientist.

The results of Professor Handy's work and that of other researchers investigating the biological effects of nanoparticles may influence policy regulations on the environmental protection and human safety of nanomaterials.

"It is worrying that the effects on the fish brain caused by these nanoparticles have some parallels with other substances like mercury poisoning, and one concern is that the materials may bioaccumulate and present a progressive or persistent hazard to wildlife and to humans", says Professor Handy.
-end-


Society for Experimental Biology

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.