Nav: Home

VCU physicists discover a tri-anion particle with colossal stability

September 18, 2017

RICHMOND, Va. (Sept. 18, 2017) -- Virginia Commonwealth University researchers have achieved a feat that is a first in the fields of physics and chemistry -- one that could have wide-ranging applications.

A team in the lab of Puru Jena, Ph.D., a distinguished professor in the Department of Physics in the College of Humanities and Sciences, has created the most stable tri-anion particle currently known to science. A tri-anion particle is a combination of atoms that contains three more electrons than protons. This discovery is novel because previously known tri-anion particles were unstable due to their numerical imbalance. These unstable particles dispel additional electrons, interrupting chemical reactions.

Jena partnered with Tianshan Zhao, a graduate student in the physics department; Jian Zhou, Ph.D., a postdoctoral fellow; and Qian Wang, Ph.D., a physics professor at Peking University, to use quantum mechanical calculations to create computer models to prove the stability of the BeB11(CN)12 tri-anion. This tri-anion is made of the elements boron and beryllium and the chemical compound cyanogen.

The researchers' work will be featured on the cover of Angewandte Chemie, a world-renowned chemistry journal, on Oct. 17. The team's article was designated a VIP paper by the publication, which means it is considered among the top five percent of papers for its contribution to the study of chemistry.

"This is very important in this field, nobody has ever found such a tri-anion," Jena said. "Not only can it keep three electrons but the third electron is extremely stable. The guiding principles we have used in this paper will help with the design of other tri-anions. The question is: What do we do with this knowledge?"

Real world applications

The tri-anion may have a number of industrial applications. So far, Jena and his team have hypothesized that the particle may be used in the creation of an aluminum ion battery, which has distinct advantages over the widely used rechargeable lithium ion battery. Aluminum is in greater supply than lithium and is less reactive. During the chemical reaction that would power the battery, the tri-anion would make the battery conductive by moving from one of its electrodes to the other.

While a battery is the only demonstrated use so far, existing applications for other particles with one additional electron, called mono-anions, and two additional electrons, called di-anions, show the potential of Jena's work.

"Such particles are very important for many reasons. Number one, they make salts. Secondly, they are used in all kinds of chemical compounds, such as those in floor cleaners as oxidizing agents that kill bacteria," Jena said. "They are also used to purify air, which is a billion-dollar industry, and in mood enhancers, similar to what Prozac does. The potential uses are endless."
-end-


Virginia Commonwealth University

Related Electrons Articles:

Deceleration of runaway electrons paves the way for fusion power
Fusion power has the potential to provide clean and safe energy that is free from carbon dioxide emissions.
Shining light on low-energy electrons
The classic method for studying how electrons interact with matter is by analyzing their scattering through thin layers of a known substance.
Ultrafast nanophotonics: Turmoil in sluggish electrons' existence
An international team of physicists has monitored the scattering behavior of electrons in a non-conducting material in real-time.
NASA mission uncovers a dance of electrons in space
NASA's MMS mission studies how electrons spiral and dive around the planet in a complex dance dictated by the magnetic and electric fields, and a new study revealed a bizarre new type of motion exhibited by these electrons.
'Hot' electrons don't mind the gap
Rice University scientists discover that 'hot' electrons can create a photovoltage about a thousand times larger than ordinary temperature differences in nanoscale gaps in gold wires.
Electrons used to control ultrashort laser pulses
We may soon get better insight into the microcosm and the world of electrons.
Supercool electrons
Study of electron movement on helium may impact the future of quantum computing.
Two electrons go on a quantum walk and end up in a qudit
There is a variety of physical systems that can be used to implement a separate quantum bit, but significantly less research has been done into systems of several qubits or qudits.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Controlling electrons in time and space
A new method has been developed to control electrons being emitted from metal tips.

Related Electrons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".