Nav: Home

VCU physicists discover a tri-anion particle with colossal stability

September 18, 2017

RICHMOND, Va. (Sept. 18, 2017) -- Virginia Commonwealth University researchers have achieved a feat that is a first in the fields of physics and chemistry -- one that could have wide-ranging applications.

A team in the lab of Puru Jena, Ph.D., a distinguished professor in the Department of Physics in the College of Humanities and Sciences, has created the most stable tri-anion particle currently known to science. A tri-anion particle is a combination of atoms that contains three more electrons than protons. This discovery is novel because previously known tri-anion particles were unstable due to their numerical imbalance. These unstable particles dispel additional electrons, interrupting chemical reactions.

Jena partnered with Tianshan Zhao, a graduate student in the physics department; Jian Zhou, Ph.D., a postdoctoral fellow; and Qian Wang, Ph.D., a physics professor at Peking University, to use quantum mechanical calculations to create computer models to prove the stability of the BeB11(CN)12 tri-anion. This tri-anion is made of the elements boron and beryllium and the chemical compound cyanogen.

The researchers' work will be featured on the cover of Angewandte Chemie, a world-renowned chemistry journal, on Oct. 17. The team's article was designated a VIP paper by the publication, which means it is considered among the top five percent of papers for its contribution to the study of chemistry.

"This is very important in this field, nobody has ever found such a tri-anion," Jena said. "Not only can it keep three electrons but the third electron is extremely stable. The guiding principles we have used in this paper will help with the design of other tri-anions. The question is: What do we do with this knowledge?"

Real world applications

The tri-anion may have a number of industrial applications. So far, Jena and his team have hypothesized that the particle may be used in the creation of an aluminum ion battery, which has distinct advantages over the widely used rechargeable lithium ion battery. Aluminum is in greater supply than lithium and is less reactive. During the chemical reaction that would power the battery, the tri-anion would make the battery conductive by moving from one of its electrodes to the other.

While a battery is the only demonstrated use so far, existing applications for other particles with one additional electron, called mono-anions, and two additional electrons, called di-anions, show the potential of Jena's work.

"Such particles are very important for many reasons. Number one, they make salts. Secondly, they are used in all kinds of chemical compounds, such as those in floor cleaners as oxidizing agents that kill bacteria," Jena said. "They are also used to purify air, which is a billion-dollar industry, and in mood enhancers, similar to what Prozac does. The potential uses are endless."
-end-


Virginia Commonwealth University

Related Electrons Articles:

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.