Nav: Home

Surviving insects and plants are tougher than we think

September 18, 2018

Insect pollinators that have survived the impacts of agricultural intensification may have a greater ability to resist future environmental changes than previously thought, a new study has found.

Pollination by insects, particularly bees, is vital to food production and humans because it affects the yield or quality of 75% of globally important crop types, but in recent years there has been increasing concern about the long-term stability of this service due to widespread declines in some species.

Despite the negative impacts of agricultural intensification on plants and insect pollinators, researchers at Centre for Ecology & Hydrology and the University of Reading found the species that remain in parts of the UK with a higher proportion of farmed land are more likely to survive a variety of potential environmental changes.

However, the research, published in the Ecology Letters journal, suggested that was because these landscapes have already lost their most vulnerable species, retaining those insect and plant species that are more able to take whatever is thrown at them.

The study drew on six million records from more than 30 years of citizen science data from thousands of volunteer naturalists, relating to sightings of species and visits to plants by pollinators such as bees, hoverflies and butterflies.

The latter records enabled researchers to identify 16,000 unique interactions between plants and pollinators across Great Britain and, for the first time, the extent of how these 'ecological networks' vary with different types of landscapes across the country.

John Redhead of the Centre for Ecology & Hydrology, the lead researcher of the new study, said: "We think that that the plants and pollinators that remain in these landscapes represent the toughest species that can handle the stresses of intensive agriculture - the vulnerable ones are already long gone.

"This means that they're also able to cope with many future changes, so although we hear about reported declines our wildlife, this may buy conservationists some time before we start to see the remaining plants and pollinators in agricultural areas really suffer."

The plants that have survived intensive agriculture include common weed species like brambles and thistles, which can cope with increased soil fertilization and reduced water availability.

Meanwhile, the insects that have fared better are 'generalist' pollinators that can feed on a wide variety of plant species, including crops and weeds, plus can cope with fewer and more scattered floral and nesting sites.

The study was funded by the Natural Environment Research Council (NERC).

Professor Tom Oliver of the University of Reading, one of the co-authors of the paper, says: "It is good news that the catastrophic loss of all species is less likely, but we still need to work hard to restore biodiversity to give these ecosystems the best chance under growing threats of climate change and pollution."

Here are some examples of species who have either declined or survived under agricultural intensification:

Losers:
  • Shrill carder and brown banded carder bees

  • Arable plant species such as corn marigold, corn buttercup and cornflower

  • Traditional meadow species such as horseshoe vetch, common rockrose and harebell.

Winners:
  • Common bumblebees

  • Classic weed species such as bramble, cow parsley, spear thistle

  • Non-native species like buddleia.

-end-
Contact information

For interviews and images, please contact Simon Williams, Media Relations Officer at the Centre for Ecology & Hydrology, UK. Tel. +44 (0) 7920 295384, 01491 69227. Email. simwil@ceh.ac.uk

Lead author

John Redhead, Centre for Ecology & Hydrology, UK. Email johdhe@ceh.ac.uk

Paper information

Potential landscape-scale pollinator networks across Great Britain: structure, stability and influence of agricultural land cover. John W. Redhead, Ben A. Woodcock, Michael J.O. Pocock, Richard F. Pywell, Adam J. Vanbergen, Tom H. Oliver. Ecology Letters. 2018. DOI: 10.1111/ele.13157

Funder

The Natural Environment Research Council (NERC) is the UK's main agency for funding and managing research, training and knowledge exchange in the environmental sciences. Our work covers the full range of atmospheric, Earth, biological, terrestrial and aquatic science, from the deep oceans to the upper atmosphere and from the poles to the equator. We co-ordinate some of the world's most exciting research projects, tackling major issues such as climate change, environmental influences on human health, the genetic make-up of life on Earth, and much more. NERC is part of UK Research & Innovation, a non-departmental public body funded by a grant-in-aid from the UK government.

Research institution information

Centre for Ecology & Hydrology, UK


The Centre for Ecology & Hydrology (CEH) is the UK's Centre of Excellence for integrated research in the land and freshwater ecosystems and their interaction with the atmosphere. CEH is part of the Natural Environment Research Council (NERC), employs more than 450 people at four major sites in England, Scotland and Wales, hosts more than 150 PhD students and has an overall budget of about £35m. CEH tackles complex environmental challenges to deliver practicable solutions so that future generations can benefit from a rich and healthy environment. http://www.ceh.ac.uk Twitter @CEHScienceNews

University of Reading

The University of Reading is rated as one of the top 200 universities in the world (THE-QS World Rankings 2009) and is one of the UK's top research-intensive universities. The University is estimated to contribute £600m to the local economy annually. It is a member of the 1994 Group of 19 leading research-intensive universities which was established in 1994 to promote excellence in university research and teaching. https://www.reading.ac.uk Twitter @UniofReading

Centre for Ecology & Hydrology

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.