Nav: Home

First gut bacteria may have lasting effect on ability to fight chronic diseases

September 18, 2018

New research showing that the first bacteria introduced into the gut have a lasting impact may one day allow science to adjust microbiomes--the one-of-a-kind microbial communities that live in our gastrointestinal tracts--to help ward off serious chronic diseases.

Findings by U of A microbial ecologist Jens Walter and his colleagues suggest differences in our microbial makeup likely depend on when we acquire our first microorganisms after birth--and the order they arrive in our gut has a lasting impact on how the microbiome looks when we grow up.

The discovery sheds new light on how these microbiomes, which are as personal as fingerprints, establish themselves and what drives their unique nature. That's key to figuring out how to change our microbiomes for the better, said Walter.

"Each of us harbours a microbiome that is vastly distinct, even for identical twins. Microbiomes are important for our health, but they appear to be shaped by many unknown factors, so it's hugely important to understand why we are all different," he said.

Studies have already shown that a person's genetics, diet, environment, lifestyle and physiological state all make small contributions to the variation of the gut microbiome. But those factors account for less than 30 per cent of the variation, noted Walter.

In the study, researchers introduced distinct microbial communities, collected one at a time, from adult mice into the gastrointestinal tracts of young, genetically identical mice. The results showed that the microbiome in the adults was more similar to the microbiome introduced first. Even using a cocktail of four different bacteria, the researchers repeatedly found that the first microbes showed the highest level of persistence and the strongest influence on how the gut microbiome developed.

The discovery about timing brings scientists one step closer to understanding how microbiomes might become disrupted--for example, through caesarean section birth or antibiotic use--which is then more likely to predispose us to chronic diseases, and how to potentially address that.

Poor gut health has been linked to obesity, Type 2 diabetes, heart disease, inflammatory bowel disease, colon cancer, neurological disorders, autism and allergies.

"If we know what drives specific microbiomes in specific people, we can have a much more rational approach to potentially altering the microbiome, and developing strategies to address those diseases," Walter said.

"Having long-term persistence of microbes when they colonize in the gut early in life means that a health-promoting biome could potentially be established by introducing beneficial bacteria straight after birth."

Baby formulas fortified with probiotics already do this to a degree, but knowing more about how probiotics affect other members of the gut's microbial community could take it to the next level, he said.

"We could be a lot more systematic. I think in 30 or 40 years we'll be able to colonize infants with specific bacteria we know are health-promoting and shape the microbiome in a beneficial way."
-end-


University of Alberta

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.