Nav: Home

Why some human genes are more popular with researchers than others

September 18, 2018

Historical bias is a key reason why biomedical researchers continue to study the same 10 percent of all human genes while ignoring many genes known to play roles in disease, according to a study publishing September 18 in the open access journal PLOS Biology, led by Thomas Stoeger and Luís Amaral of Northwestern University, and colleagues. This bias is bolstered by research funding mechanisms and social forces.

Recent studies from other labs have reported that researchers actively study only about 2,000 of the nearly 20,000 human protein-coding genes, so the researchers set out to find why. The researchers compiled 36 distinct resources describing various aspects of biomedical research and analyzed the large database for answers.

The team found that well-meaning policy interventions to promote exploratory or innovative research actually result primarily in additional work on the most established research topics -- those genes first characterized in the 1980s and 1990s, before completion of the Human Genome Project. The researchers also discovered that postdoctoral fellows and Ph.D. students who focus on poorly characterized genes have a 50 percent lower chance of becoming an independent researcher.

"We discovered that current research on human genes does not reflect the medical importance of the genes," Stoeger said. "Many genes with a very strong relevance to human disease are still not studied. Instead, social forces and funding mechanisms reinforce a focus of present-day science on past research topics."

The researchers applied a systems approach to the data -- which included chemical, physical, biological, historical and experimental data -- to uncover underlying patterns. In addition to explaining why some genes are not studied, they also explain the extent to which an individual gene is studied. And they can do that for approximately 15,000 genes.

The Human Genome Project -- the identification and mapping of all human genes, completed in 2003 -- promised to expand the scope of scientific study beyond the small group of genes scientists had studied since the 1980s. But the Northwestern researchers found that 30 percent of all genes have never been the focus of a scientific study and less than 10 percent of genes are the subject of more than 90 percent of published papers. And this despite the increasing availability of new techniques to study and characterize genes.

"Everything was supposed to change with the Human Genome Project, but everything stayed the same," said Amaral, the Erastus Otis Haven Professor of Chemical and Biological Engineering and a co-author of the study. "Scientists keep going to the same place, studying the exact same genes. Should we be focusing all of our attention on this small group of genes?"

With researchers focused on just 2,000 human genes, the biology encoded by the remaining 18,000 genes remains largely uncharacterized. Some of these genes, the researchers note, include an understudied breast cancer gene cluster and genes connected to lung cancer that could be at least as important as the well-studied genes.

"The bias to study the exact same human genes is very high," Amaral said. "The entire system is fighting the very purpose of the agencies and scientific knowledge which is to broaden the set of things we study and understand. We need to make a concerted effort to incentivize the study of other genes important to human health."

Looking forward, the Northwestern team is developing a public resource that could help identify understudied genes that have the potential to be of critical importance to specific diseases. The resource includes information on any extraordinary chemical property, whether a gene is highly active in a specific tissue and whether there is a strong link to a disease.
-end-
Peer-reviewed / Meta-Analysis / Humans

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2006643

Citation: Stoeger T, Gerlach M, Morimoto RI, Nunes Amaral LA (2018) Large-scale investigation of the reasons why potentially important genes are ignored. PLoS Biol 16(9): e2006643. https://doi.org/10.1371/journal.pbio.2006643

Image Caption: Hot and cold regions of biology. Genes (dots) are mapped according to generic chemical and biological characteristics. Blue indicates cold regions, where genes are studied less frequently than anticipated under the assumption that every gene would be studied to the same extent.

Image Credit: Thomas Stoeger

Funding: National Institutes of Aging https://projectreporter.nih.gov/project_info_description.cfm?aid=9512623&icde=40653937&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball= (grant number RF1AG057296). Richard Morimoto. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. National Institutes of Aging https://projectreporter.nih.gov/project_info_description.cfm?aid=9412666&icde=40653937&ddparam=&ddvalue=&ddsub=&cr=2&csb=default&cs=ASC&pball= (grant number AG026647). Richard Morimoto. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Daniel F. and Ada L. Rice Foundation (grant number). Richard Morimoto. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. National Institute of Allergy and Infectious Diseases https://projectreporter.nih.gov/project_info_description.cfm?aid=9454822&icde=40654009&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball= (grant number U19AI135964). Luis Amaral. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Department of Defense's Army Research Office (grant number W911NF-14-1-0259). Luis Amaral. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Northwestern University Data Science Initiative http://datascience.northwestern.edu/ (grant number). Thomas Stoeger. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NSF (grant number 1764421-01). Luis Amaral. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Simons Foundation (grant number 597491-01). Luis Amaral. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Genes Articles:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.
New alcohol genes uncovered
Do you have what is known as problematic alcohol use?
How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
More Genes News and Genes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.