Nav: Home

Quantum anomaly -- breaking a classical symmetry with ultracold atoms

September 18, 2018

A FLEET study of ultracold atomic gases - a billionth the temperature of outer space - has unlocked new, fundamental quantum effects.

The researchers at Swinburne University of Technology studied collective oscillations in ultracold atomic gases - identifying where quantum effects occur to 'break' symmetries predicted by classical physics.

They also observed the transition between two-dimensional (2D) behaviour and three-dimensional (3D) behaviour.

"Fundamental discoveries made from such observations will inform FLEET's search for electronic conduction without wasted dissipation of energy," explained study-author Professor Chris Vale.


Two-dimensional materials exhibit many novel physical properties and are keenly studied for their potential uses - for example, in ultra-low energy electronics.

However, strong correlations and imperfections within 2D materials make them difficult to understand theoretically. Quantum gases of ultra-cold neutral atoms will help unlock the fundamental physics of 2D materials, as well as uncovering new phenomena that are not readily accessible in other systems.

Experiments performed on quantum gases of ultra-cold neutral atoms enhance our understanding of phase transitions and the effects of interactions between particles.

This improved ability, understanding and control of phase transitions will have a direct application in FLEET's development of future low-energy, topologically-based electronics.


'Symmetries' are an essential ingredient in the formulation of many physics theories, allowing simplified descriptions by identifying which factors don't modify a system's underlying physical properties.

For example, in a 'scale invariant' system, changing the distances between its particles doesn't alter the behaviour of a material but merely 'scales' it by an appropriate factor.

Gases of ultracold atoms confined to a two-dimensional plane allowed the researchers to explore regimes where that 'scaling symmetry' can be broken by quantum effects.


Researchers studied a strongly-interacting 2D Fermi gas of Lithium-6 atoms, measuring the frequency of a radial oscillation known as the 'breathing mode', the frequency of which is set by the gases compressibility and is a window to the gases thermodynamic equation of state.

The breathing mode is the gas's lowest energy collective oscillation, and as long as scaling symmetry exists, it should always occur at a single frequency (exactly twice the harmonic confinement frequency).

The study confirmed that scaling symmetry is broken in the presence of strong interactions between particles, affecting the thermodynamic relation between the pressure and density.

This is called a quantum anomaly, which occurs when a symmetry that is present in a classical theory is broken in the corresponding quantum theory.

Measurements of breathing mode frequency also allowed researchers to map the evolution of thermodynamic equation of state between the 2D and 3D limits, showing that strict 2D behaviour is found in only a very limited region of parameter space.

The study Quantum Anomaly and 2D-3D Crossover in Strongly Interacting Fermi Gases was published today in Physical Review Letters.

Acknowledgements: The study was funded by the Australian Research Council under the Centres of Excellence, Future Fellowship and Discovery programs. Collaborators included FLEET CI Meera Parish and AI Jesper Levinson.


Within FLEET, Chris Vale studies topological phenomena in 2D gases of ultracold fermionic atoms, investigating cold atom implementations of Floquet topological superfluidity, nonequilibrium enhancements to the superconducting critical temperature and new forms of topological matter based on optically induced spin-orbit coupling in 2D atomic gases, in Research Theme 3.

FLEET's research theme 3 studies systems that are temporarily driven out of thermal equilibrium to investigate the qualitatively different physics displayed and new capabilities for dynamically controlling their behaviour.

Chris leads the study of quantum gases at Swinburne University of Technology. In these collections of atoms cooled to only 100 nanoKelvins above Absolute Zero, behaviours that are usually only found at the microscopic level become prominent at the macroscopic level.

The team's study of Fermi gases confined to 2D tests new paradigms for dissipationless transport in topological and non-equilibrium quantum matter synthesised from ultracold atoms.

Chris is one of almost a hundred researchers at FLEET, all motivated by one grand challenge: to reduce the energy used in information and communication technology (ICT), which already accounts for at least 8% of global electricity use, and is doubling every decade.
FLEET (the ARC Centre of Excellence in Future Low-Energy Electronics Technologies) will develop systems in which electricity flows with minimal resistance and therefore minimal wasted dissipation of energy, and devices in which this 'dissipationless' electric current can be switched on and off at will.

These devices will enable revolutionary new electronics and communications technologies with ultra-low energy consumption.



ARC Centre of Excellence in Future Low-Energy Electronics Technologies

Related Technology Articles:

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.
Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.
Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.
Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.
April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
More Technology News and Technology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at