Nav: Home

Tensile strength of carbon nanotubes depends on their chiral structures

September 18, 2019

Nagoya, Japan - Single-walled carbon nanotubes should theoretically be extremely strong, but it remains unclear why their experimental tensile strengths are lower and vary among nanotubes. A team at Nagoya University, Kyoto University, and Aichi Institute of Technology directly measured the tensile strengths of individual structure-defined single-walled carbon nanotubes, revealing key insights into the relationship between their structure and strength.

Carbon nanotubes have been predicted as game-changing structural materials due to their outstanding theoretical strength per weight (Fig. 1a). They have even encouraged the construction of a space elevator, which is impossible using other existing materials.

Carbon nanotubes have a variety of structures with various carbon atom alignments. Depending on the number of concentric layers, carbon nanotubes are classified as single-walled or multi-walled nanotubes (Fig. 1b). Additionally, structures of the concentric layers are specified by diameter and chiral angle (Fig 1c) or a pair of integers (n,m) called as chiral indices.

Because of the difficulty in the selective synthesis of single structure nanotubes, the systematic studies of their mechanical properties require the structure determination of each sample nanotubes. However, due to their nanoscale size and difficulty in handling them, the tensile test of "structure-defined" single-walled carbon nanotube has not been achieved yet. The previous studies have shown that the tensile strength of real carbon nanotubes, including multiwalled and structure-undefined single-walled carbon nanotubes, is typically lower than the ideal case. Furthermore, the strengths considerably varied among the measured samples. This scattering poses a critical problem regarding their practical use in macroscopic structural materials such as yarns composed of many carbon nanotubes, because their fracture will be initiated from the weakest nanotubes. The lack of a systematic experimental study on the structure dependence has long obscured the fracture mechanism of real carbon nanotubes, and, therefore, has hindered the development of a macroscopic structural material with an ideal strength-to-weight ratio.

A team of physicists, chemists, and mechanical engineers designed the experimental schemes for the tensile test of structure-defined single-walled carbon nanotubes (hereafter, referred to as nanotubes). Individual nanotubes were synthesized over a micrometer-scale open slit via ambient alcohol chemical vapor deposition methods (Fig. 2a). Broadband Rayleigh scattering spectroscopy was employed to determine the nanotube structures (Fig. 2b). Then, the individual structure-defined nanotubes were picked up with a micro fork (Fig. 2c), and transferred onto a homemade microelectromechanical system (MEMS) device (Fig. 2d). Each individual nanotube was suspended and cramped between a pair of sample stages that were connected to a micro load-cell and actuator for the direct force measurement and uniaxial tensile force application, respectively (Fig. 2d). Figure 2e shows an image at the moment the nanotube fractured during tensile loading. The force was directly evaluated from the measured displacement of the load-cell stage equipped with micro springs according to Hooke's law.

The team succeeded in measuring the tensile strengths of 16 structure-defined nanotube species. Figure 3a summarizes the structure dependence of the measured ultimate tensile nanotube strengths. The strengths are seemingly dependent on both the chiral angle (Fig. 3b) and diameter (Fig. 3c) of the nanotubes.

The team found the clear relation between strengths and structures by considering directions of carbon-carbon bonds against the direction of the tensile load and stress concentration at structural defects (Fig. 4). Furthermore, the team developed an empirical formula to predict the real nanotubes' strengths. This empirical formula provides the most favorable nanotube structures that should be selectively synthesized toward the strongest material (Top of contents). Fortunately, the suggested types of the nanotube structures are not well-constrained. Although there remain a number of severe problems, including structure selective synthesis of defect-less nanotubes, the growth of long nanotubes, and making ropes with keeping their strength, this finding provides one of the fundamental insights for developing super-strong and ultra-lightweight materials for use in the construction of the safest and most fuel-efficient transport equipment or massive architectural structures.
-end-


Japan Science and Technology Agency

Related Carbon Nanotubes Articles:

How plantains and carbon nanotubes can improve cars
Researchers from the University of Johannesburg have shown that plantain, a starchy type of banana, is a promising renewable source for an emerging type of lighter, rust-free composite materials for the automotive industry.
New production method for carbon nanotubes gets green light
A new method of producing carbon nanotubes -- tiny molecules with incredible physical properties used in touchscreen displays, 5G networks and flexible electronics -- has been given the green light by researchers, meaning work in this crucial field can continue.
Growing carbon nanotubes with the right twist
Researchers synthetize nanotubes with a specific structure expanding previous theories on carbon nanotube growth.
Research shows old newspapers can be used to grow carbon nanotubes
New research has found that old newspaper provide a cheap and green solution for the bulk production of single walled carbon nanotubes.
Clean carbon nanotubes with superb properties
Scientists at Aalto University, Finland, and Nagoya University, Japan, have found a new way to make ultra-clean carbon nanotube transistors with superior semiconducting properties.
Dietary fiber effectively purifies carbon nanotubes
A dietary fiber can help separate out semiconducting carbon nanotubes used for making transistors for flexible electronics.
Why modified carbon nanotubes can help the reproducibility problem
Scientists at Tokyo Institute of Technology (Tokyo Tech) conducted an in-depth study on how carbon nanotubes with oxygen-containing groups can be used to greatly enhance the performance of perovskite solar cells.
Tensile strength of carbon nanotubes depends on their chiral structures
Single-walled carbon nanotubes should theoretically be extremely strong, but it remains unclear why their experimental tensile strengths are lower and vary among nanotubes.
New study reveals carbon nanotubes measurement possible for the first time
Swansea University scientists report an entirely new approach to manipulation of carbon nanotubes that allows physical measurements to be made on carbon nanotubes that have previously only been possible by theoretical computation.
Neural networks will help manufacture carbon nanotubes
A team of scientists from Skoltech's Laboratory of Nanomaterials proposed a neural-network-based method for monitoring the growth of carbon nanotubes, preparing the ground for a new generation of sophisticated electronic devices.
More Carbon Nanotubes News and Carbon Nanotubes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.