Nav: Home

Over 14% efficiency for ternary organic solar cell with 300 nm thick active layer

September 18, 2019

Organic solar cells (OSCs) have drawn great attention due to their advantages of making large area and flexible solar panels through the low-cost solution coating methods. Recently, the single-junction OSCs with over 16% power conversion efficiency (PCE) have been reported. However, photovoltaic performance of these cells is very sensitive to the variation in the active layer thickness, which has been recognized as a big challenge for practical application of OSCs.

The photovoltaic performance of OSCs is determined by open-circuit voltage (VOC), short-circuit current density (JSC) and fill factor (FF). For the current high efficiency non-fullerene-based system, the efficiency of OSCs usually shows a sharp drop in FF upon increasing the thickness of the active layer. Such FF drops are generally caused by poor and imbalanced charge transport, which results in enhanced bimolecular charge recombination and the formation of space charge in thicker films.

Very recently, Professor Jianhui Hou's group in Institute of Chemistry Chinese Academy of Sciences demonstrated a thick-film (300 nm) ternary OSC with a power conversion efficiency of 14.3%. This excellent photovoltaic performance is achieved by introducing phenyl-C61-butyric-acid-methyl ester (PC61BM) into a PBDB-T-2Cl: BTP-4F host blend. They found that the addition of PC61BM is helpful for improving the hole and electron mobilities, and thus facilitates charge transport in the thick active layers, leading to the improved efficiencies of OSCs. Their results illustrate that introducing fullerene derivative as a third component is a facile and effective strategy to realize efficient thick-film OSCs.
This work was supported by the National Natural Science Foundation of China (21835006, 21704004, 91633301, 51673201), the Chinese Academy of Sciences (KJZD-EW-J01), the Innovation Project supported by Beijing National Laboratory for Molecular Sciences (BNLMS-CXXM-201903)

See the article: Ma L, Xu Y, Zu Y, Liao Q, Xu B, An C, Zhang S, Hou J. A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency. Sci. China Chem., 2019, 62, DOI: 10.1007/s11426-019-9556-7.

Science China Press

Related Efficiency Articles:

New efficiency world record for organic solar modules
Researchers from Nuremberg and Erlangen has set a new record for the power conversion efficiency of organic photovoltaic modules.
A new method for quantifying crystal semiconductor efficiency
Japanese scientists have found a new way to successfully detect the efficiency of crystal semiconductors.
Improving efficiency, brightness of perovskite LEDs
Advances in organic phosphorescent materials are opening new opportunities for organic light-emitting diodes for combined electronics and light applications, including solar cells, photodiodes, optical fibers and lasers.
'Deforming' solar cells could be clue to improved efficiency
Solar cells and light sensing technologies could be made more efficient by taking advantage of an unusual property due to deformations and defects in their structures.
Pioneering 3D printed device sets new record for efficiency
A new 3-D printed thermoelectric device, which converts heat into electric power with an efficiency factor over 50% higher than the previous best for printed materials -- and is cheap to produce in bulk -- has been manufactured by researchers at Swansea University's SPECIFIC Innovation and Knowledge Centre.
New surface treatment could improve refrigeration efficiency
Unlike water, liquid refrigerants and other fluids that have a low surface tension tend to spread quickly into a sheet when they come into contact with a surface.
Magnets can help AI get closer to the efficiency of the human brain
Purdue University researchers have developed a process to use magnetics with brain-like networks to program and teach devices such as personal robots, self-driving cars and drones to better generalize about different objects.
Solving the efficiency of Gram-negative bacteria
Superbugs, also known as Gram-negative bacteria, are causing a global health crisis.
Understanding high efficiency of deep ultraviolet LEDs
Deep ultraviolet light-emitting diodes (DUV-LEDs) made from aluminium gallium nitride (AlGaN) efficiently transfer electrical energy to optical energy due to the growth of one of its bottom layers in a step-like fashion.
Milestone for bERLinPro: Photocathodes with high quantum efficiency
A team at the HZB has improved the manufacturing process of photocathodes and can now provide photocathodes with high quantum efficiency for bERLinPro.
More Efficiency News and Efficiency Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at