Nav: Home

Artificially engineering the intestine

September 18, 2019

New Rochelle, NY, September 17, 2019-Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy. The ability to grow artificial intestine is a coveted goal with the potential to profoundly improve this outlook. Working toward this target, researchers have created an artificial scaffold that mimics the native small intestinal architecture, complete with villi; this scaffold can incorporate intestinal epithelial cells and be successfully implanted in mice while retaining structural integrity. The work is reported in Tissue Engineering, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click here to read the article for free through October 17, 2019.

David J. Hackam, Johns Hopkins School of Medicine, Baltimore, MD, and colleagues present their results in an article titled "Development of Intestinal Scaffolds that Mimic Native Mammalian Intestinal Tissue." The authors used polyglycerol sebacate to fabricate scaffolds and showed that they have mechanical properties similar to native intestine, are stable in control and digestive media, and can be infiltrated with intestinal epithelial cells for functional intestinal recreation attempts. An additional feature of the scaffold material is its amenability to the future integration of drug and growth factor delivery mechanisms.

"Dr. Hackam and his team at Johns Hopkins, Cornell, and Walter Reed, have beautifully mimicked the microarchitecture of native small intestine using a degradable, poly(glycerol sebacate) scaffold, showing that their approach supports functional intestinal epithelial cells for weeks after implantation," says Tissue Engineering Co-Editor-in-Chief John P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland. "The work has tremendous translational potential."
-end-
About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and John P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Leadership of Tissue Engineering Parts B (Reviews) and Part C (Methods) is provided by Katja Schenke-Layland, PhD, Eberhard Karls University, Tübingen, Heungsoo Shin, PhD, Hanyang University; and John A. Jansen, DDS, PhD, Radboud University, and Xiumei Wang, PhD, Tsinghua University respectively. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed on the Tissue Engineering website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.

Mary Ann Liebert, Inc./Genetic Engineering News

Related Tissue Engineering Articles:

Plant tissue engineering improves drought and salinity tolerance
After several years of experimentation, scientists have engineered thale cress, or Arabidopsis thaliana, to behave like a succulent, improving water-use efficiency, salinity tolerance and reducing the effects of drought.
COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.
Biofabrication drives tissue engineering in 2019
In the quest to engineer replacement tissues and organs for improving human health, biofabrication has emerged as a crucial set of technologies that enable the control of precise architecture and organization.
Keratin scaffolds could advance regenerative medicine and tissue engineering for humans
Researchers at Mossakowski Medical Research Center of the Polish Academy of Science have developed a simple method for preparing 3D keratin scaffold models which can be used to study the regeneration of tissue.
Combined tissue engineering provides new hope for spinal disc herniations
A promising new tissue engineering approach may one day improve outcomes for patients who have undergone discectomy -- the primary surgical remedy for spinal disc herniations.
Tissue engineering: The big picture on growing small intestines
CHLA surgeon Dr. Tracy Grikscheit and colleagues describe how stem cell therapies could help babies with severe intestinal issues.
Scientists use molecular tethers, chemical 'light sabers' for tissue engineering
Researchers at the University of Washington unveiled a new strategy to keep proteins intact and functional in synthetic biomaterials for tissue engineering.
UCI engineers aim to pioneer tissue-engineering approach to TMJ disorders
Here's something to chew on: One in four people are impacted by defects of the temporomandibular - or jaw - joint.
Scientists develop a cellulose biosensor material for advanced tissue engineering
I.M. Sechenov First Moscow State Medical University teamed up together with Irish colleagues to develop a new imaging approach for tissue engineering.
The use of electrospun scaffolds in musculoskeletal tissue engineering
Rotator Cuff tears affect 15 percent of 60 year olds and carry a significant social and financial burden.
More Tissue Engineering News and Tissue Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.