Modeling a model nanoparticle

September 18, 2019

PITTSBURGH (Sept. 18, 2019) -- Metal nanoparticles have a wide range of applications, from medicine to catalysis, from energy to the environment. But the fundamentals of adsorption--the process allowing molecules to bind as a layer to a solid surface--in relation to the nanoparticle's characteristics were yet to be discovered.

New research from the University of Pittsburgh Swanson School of Engineering introduces the first universal adsorption model that accounts for detailed nanoparticle structural characteristics, metal composition and different adsorbates, making it possible to not only predict adsorption behavior on any metal nanoparticles but screen their stability, as well.

The research combines computational chemistry modeling with machine learning to fit a large number of data and accurately predict adsorption trends on nanoparticles that have not previously been seen. By connecting adsorption with the stability of nanoparticles, nanoparticles can now be optimized in terms of their synthetic accessibility and application property behavior. This improvement will significantly accelerate nanomaterials design and avoid trial and error experimentation in the lab.

"This model has the potential to impact diverse areas of nanotechnology with applications in catalysis, sensors, separations and even drug delivery," says Giannis (Yanni) Mpourmpakis, the Swanson School's Bicentennial Alumni Faculty Fellow and associate professor of chemical and petroleum engineering, whose CANELa lab conducted the research. "Our lab, as well as other groups, have performed prior computational studies that describe adsorption on metals, but this is the first universal model that accounts for nanoparticle size, shape, metal composition and type of adsorbate. It's also the first model that directly connects an application property, such as adsorption and catalysis, with the stability of the nanoparticles."
The paper, "Unfolding Adsorption on Metal Nanoparticles: Connecting Stability with Catalysis" was published in Science Advances (DOI: 10.1126/sciadv.aax5101) on Sept. 13, 2019. It was authored by James Dean, Michael G. Taylor, PhD, and Giannis Mpourmpakis, PhD. The research was funded by a Designing Engineering and Material Systems grant from the National Science Foundation.

University of Pittsburgh

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to