Nav: Home

How sleepless nights compromise the health of your gut

September 18, 2019

It is well known that individuals who work night-shifts, or travel often across different time zones, have a higher tendency to become overweight and suffer from gut inflammation. The underlying cause for this robust phenomenon has been the subject of many studies that tried to relate physiological processes with the activity of the brain's circadian clock, which is generated in response to the daylight cycle.

Now, the group of Henrique Veiga-Fernandes, at the Champalimaud Centre for the Unknown in Lisbon, Portugal, discovered that the function of a group of immune cells, which are known to be strong contributors to gut health, is directly controlled by the brain's circadian clock. Their findings were published today in the scientific journal Nature.

"Sleep deprivation, or altered sleep habits, can have dramatic health consequences, resulting in a range of diseases that frequently have an immune component, such as bowel inflammatory conditions", says Veiga-Fernandes, the principal investigator who led the study. "To understand why this happens, we started by asking whether immune cells in the gut are influenced by the circadian clock."

The big clock and the little clock

Almost all cells in the body have an internal genetic machinery that follows the circadian rhythm through the expression of what are commonly known as "clock genes". The clock genes work like little clocks that inform cells of the time of day and thereby help the organs and systems that the cells make up together, anticipate what is going to happen, for instance if it's time to eat or sleep.

Even though these cell clocks are autonomous, they still need to be synchronised in order to make sure that "everyone is on the same page". "The cells inside the body don't have direct information about external light, which means that individual cell clocks can be off", Veiga-Fernandes explains. "The job of the brain's clock, which receives direct information about daylight, is to synchronise all of these little clocks inside the body so that all systems are in synch, which is absolutely crucial for our wellbeing".

Among the variety of immune cells that are present in the intestine, the team discovered that Type 3 Innate Lymphoid Cells (ILC3s) were particularly susceptible to perturbations of their clock genes. "These cells fulfill important functions in the gut: they fight infection, control the integrity of the gut epithelium and instruct lipid absorption", explains Veiga-Fernandes. "When we disrupted their clocks, we found that the number of ILC3s in the gut was significantly reduced. This resulted in severe inflammation, breaching of the gut barrier, and increased fat accumulation."

These robust results drove the team to investigate why is the number of ILC3s in the gut affected so strongly by the brain's circadian clock. The answer to this question ended up being the missing link they were searching for.

It's all about being in the right place at the right time

When the team analysed how disrupting the brain's circadian clock influenced the expression of different genes in ILC3s, they found that it resulted in a very specific problem: the molecular zip-code was missing! It so happens that in order to localise to the intestine, ILC3s need to express a protein on their membrane that works as a molecular zip-code. This 'tag' instructs ILC3s, which are transient residents in the gut, where to migrate. In the absence of the brain's circadian inputs, ILC3s failed to express this tag, which meant they were unable to reach their destination.

According to Veiga-Fernandes, these results are very exciting, because they clarify why gut health becomes compromised in individuals who are routinely active during the night. "This mechanism is a beautiful example of evolutionary adaptation", says Veiga-Fernandes. "During the day's active period, which is when you feed, the brain's circadian clock reduces the activity of ILC3s in order to promote healthy lipid metabolism. But then, the gut could be damaged during feeding. So after the feeding period is over, the brain's circadian clock instructs ILC3s to come back into the gut, where they are now needed to fight against invaders and promote regeneration of the epithelium."

"It comes as no surprise then", he continues, "that people who work at night can suffer from inflammatory intestinal disorders. It has all to do with the fact that this specific neuro-immune axis is so well-regulated by the brain's clock that any changes in our habits have an immediate impact on these important, ancient immune cells."

This study joins a series of groundbreaking discoveries produced by Veiga-Fernandes and his team, all drawing new links between the immune and nervous systems. "The concept that the nervous system can coordinate the function of the immune system is entirely novel. It has been a very inspiring journey; the more we learn about this link, the more we understand how important it is for our wellbeing and we are looking forward to seeing what we will find next", he concludes.
-end-
Article reference: Cristina Godinho-Silva, Rita G. Domingues, Miguel Rendas, Bruno Raposo, Helder Ribeiro, Joaquim Alves da Silva, Ana Vieira, Rui M. Costa, Nuno L. Barbosa-Morais, Tania Carvalho, Henrique Veiga-Fernandes. (2019). Light-entrained and brain-tuned circadian circuits regulate ILC3 and gut homeostasis. Nature. DOI: 10.1038/s41586-019-1579-3.

URL: https://www.nature.com/articles/s41586-019-1579-3

Champalimaud Centre for the Unknown

Related Immune Cells Articles:

Mapping immune cells in brain tumors
It is not always possible to completely remove malignant brain tumors by surgery so that further treatment is necessary.
Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.
Experience matters for immune cells
The discovery that immune T cells have a spectrum of responsiveness could shed light on how our immune system responds to infections and cancer, and what goes wrong in immune diseases.
Immune cells against Alzheimer's?
German researchers have developed a novel, experimental approach against Alzheimer's.
Arming the body's immune cells
Researchers at UC have discovered a previously unknown mechanism that could explain the reason behind decreased immune function in cancer patients and could be a new therapeutic target for immunotherapy for those with head and neck cancers.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
How the immune system becomes blind to cancer cells
Researchers have described the activation of a key protein used by tumor cells to stop the body's immune response.
What protects killer immune cells from harming themselves?
White blood cells, which release a toxic potion of proteins to kill cancerous and virus-infected cells, are protected from any harm by the physical properties of their cell envelopes, find scientists from UCL and the Peter MacCallum Cancer Centre in Melbourne.
How self-reactive immune cells are allowed to develop
A research team at Lund University in Sweden has found the mechanism that controls the growth of B1-cells in mice.
More Immune Cells News and Immune Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.