Combination therapies could help treat fatal lung cancers

September 18, 2019

Combining a new class of drug with two other compounds can significantly shrink lung tumours in mice and human cancer cells, finds a new study led by the Francis Crick Institute and The Institute of Cancer Research, London.

The study, published in Science Translational Medicine, looked at G12C KRAS inhibitors. This new type of drug targets a specific mutation in the KRAS gene that can cause cells to multiply uncontrollably and lead to fast-growing cancers.

These mutations are found in 14% of lung adenocarcinomas, the most common form of lung cancer. There are still no effective treatments for most patients, and more than eight in ten will die within five years of diagnosis. Every year, around 2,800 people in the UK will develop lung cancers with the deadly G12C KRAS mutation.

Drugs targeting G12C KRAS mutations are showing promising anti-tumour activity and few adverse effects in US clinical trials, but it is unclear how long any response will last before the cancer becomes resistant.

"It's likely that tumours will develop resistance to the new drugs, so we need to stay one step ahead," explains senior author Professor Julian Downward, who led the research at the Crick and ICR. "We found a three-drug combination that significantly shrank lung tumours in mice and human cancer cells. Tumours treated with the combination shrank and stayed small, whereas those treated with the G12C KRAS inhibitor alone tended to shrink at first but then start growing again after a couple of weeks. Our results suggest that it would be worth trying this combination in human trials in the coming years, to prevent or at least delay drug resistance."

The other compounds in the combination block the mTOR and IGF1R pathways, both of which have been previously tested in cancer patients. There are already licensed mTOR inhibitors on the market, while IGF1R inhibitors are still at the trial stage.

To develop this combination, the team used tumour cells derived from patients with the G12C KRAS mutation. They edited these cells to block the activity of 16,019 different genes and treated them with compounds that KRAS mutant cancers are known to be susceptible to.

"We found that cell lines without the MTOR gene were significantly more vulnerable to both KRAS and IGF1R inhibitors," explains first author Dr Miriam Molina-Arcas, Senior Laboratory Research Scientist at the Crick. "When we blocked all three pathways, the mutant cancer cells were simply unable to survive. This makes it a promising avenue for human trials in the coming years, although this is still early research. Promising results in mice and cells can tell us what's worth trying, but it's impossible to predict how patients will respond until we actually try."
-end-


The Francis Crick Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.