Learning to read boosts the visual brain

September 18, 2019

Reading is a recent invention in the history of human culture--too recent for dedicated brain networks to have evolved specifically for it. How, then, do we accomplish this remarkable feat? As we learn to read, a brain region known as the 'visual word form area' (VWFA) becomes sensitive to script (letters or characters). However, some have claimed that the development of this area takes up (and thus detrimentally affects) space that is otherwise available for processing culturally relevant objects such as faces, houses or tools.

An international research team led by Falk Huettig (MPI and Radboud University Nijmegen) and Alexis Hervais-Adelman (MPI and University of Zurich) set out to test the effect of reading on the brain's visual system. The team scanned the brains of over ninety adults living in a remote part of Northern India with varying degrees of literacy (from people unable to read to skilled readers), using functional Magnetic Resonance Imaging (fMRI). While in the scanner, participants saw sentences, letters, and other visual categories such as faces.

If learning to read leads to 'competition' with other visual areas in the brain, readers should have different brain activation patterns from non-readers--and not just for letters, but also for faces, tools, or houses. 'Recycling' of brain networks when learning to read has previously been thought to negatively affect evolutionary old functions such as face processing. Huettig and Hervais-Adelman, however, hypothesised that reading, rather than negatively affecting brain responses to non-orthographic (non-letter) objects, may, conversely, result in increased brain responses to visual stimuli in general.

"When we learn to read, we exploit the brain's capacity to form category-selective patches in visual brain areas. These arise in the same cortical territory as specialisations for other categories that are important to people, such as faces and houses. A long-standing question has been whether learning to read is detrimental to those other categories, given that there is limited space in the brain", explains Alexis Hervais-Adelman.

Reading-induced recycling did not detrimentally affect brain areas for faces, houses, or tools--neither in location nor size. Strikingly, the brain activation for letters and faces was more similar in readers than in non-readers, particularly in the left hemisphere (the left ventral temporal lobe).

"Far from cannibalising the territory of its neighbours, the visual word form area (VWFA) is rather overlaid upon these, remaining responsive to other visual categories", explains Falk Huettig. "Thus learning to read is good for you", he concludes. "It sharpens visual brain responses beyond reading and has a general positive impact on your visual system".
-end-
Publication

Hervais-Adelman, A., Kumar, U., Mishra, R. K., Tripathi, V. N., Guleria, A., Singh, J. P., Eisner, F., & Huettig, F. (2019). Learning to read recycles visual cortical networks without destruction. Science Advances, 5, eaax0262.

Max Planck Institute for Psycholinguistics

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.