Predicting the future of liver-safe drugs

September 18, 2020

Researchers from Tokyo Medical and Dental University (TMDU) in collaboration with Takeda-CiRA program and other international institutions have developed a Polygenic Risk Score to help predict drug-induced liver injury, validated by patients' genomic data, cell cultures and organoids

Tokyo, Japan - The ancient Romans studied the livers of sacrificial animals to read omens and make prophesies. Now researchers at Tokyo Medical and Dental University (TMDU) and Takeda-CiRA program along with a world-wide team of collaborators, have devised a polygenic risk score (PRS) based on liver genomics that can predict the likelihood of medications causing liver damage.

Introducing new drugs is a demanding process. Pharmaceutical research continually proffers potential drugs that need to be clinically trialed. These candidates are often more efficacious, but may have unacceptable or unsuspected side-effects. Unfortunately, adverse outcomes often require termination of new drug trials, and even drugs in common use may show a cumulated trend of undesired effects hitherto unpredicted; identifying patients at risk can greatly reduce this.

The liver is the primary site where most drugs, indeed any foreign potentially toxic chemical, is metabolized into an inactive form for excretion by the body. As a "frontliner", it bears the brunt of most adverse effects that manifest as hepatocyte injury. Indeed, drug-induced-liver-injury (DILI) is the main reason why drugs are withdrawn at different stages of development, trial and usage, often after significant, and avoidable, morbidity and expense.

"We formulated our risk score by mathematically analyzing previous genome-wide association studies that had flagged variants likely to predict susceptibility to DILI," explains Masaru Koido, lead author. "We validated it across a spectrum of potentially hepatotoxic drugs, on genomic data, primary hepatocyte cultures and organoids from multiple donors. Noteworthy was our use of organoids--mini-organs bioengineered from three-dimensional tissue cultures derived from stem cells that replicate their microanatomy and functional complexity."

The researchers also analyzed the derived scores to delineate pathways underlying susceptibility to DILI. From the data they inferred that genetic variation at the hepatocyte level contributed to DILI susceptibility; moreover, DILI predictivity was shared across a variety of discrete drugs suggesting that the PRS related to intracellular mechanisms of hepatotoxicity.

"Our "polygenicity-in-a-dish" strategy allows safe, specific and multidimensional investigation into the pathogenesis of DILI," explains senior author Takanori Takebe. "A genetic test score will enable clinicians to tailor medication choice, dosage, and monitoring based on the patient's estimated risk. Furthermore, drug trials could be made safer and better focused by excluding vulnerable subjects. However, further research is needed to upscale our PRS into a valid and reliable instrument for widespread screening of novel pharmaceuticals in clinical practice."
-end-
The article, "Polygenic architecture informs potential vulnerability to drug-induced liver injury" was published in Nature Medicine at DOI: 10.1038/s41591-020-1023-0

Tokyo Medical and Dental University

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.