Rochester researchers document an optical fiber beyond compare

September 18, 2020

A new hollow optical fiber greatly reduces the "noise" interfering with the signals it transmits compared to the single-mode fibers now widely used, researchers at the University of Rochester report.

The anti-resonant hollow-core fiber, created by researchers at the University of Central Florida, produces a thousand times less "noise" - and the lowest levels ever recorded from interference caused by acoustic phonons arising from the glass in the fiber at room temperatures.

To document this, researchers in the lab of William Renninger, assistant professor of optics, developed a highly sensitive measuring technique. Their findings are reported in a paper published in APL Photonics.

"It's a very valuable fiber, and despite a lot of interest in it by researchers and some companies, nobody had really studied the behavior of phonons supported by the structure, and to what extent it actually reduced 'noise,' " says Renninger, an expert in experimental and theoretical nonlinear optics.

The lab's findings conclusively demonstrate that the fiber is a "promising platform for low noise applications, such as for quantum information processing and optical communications," writes lead author Arjun Iyer, a graduate research associate in Renninger's lab.

A unique answer to 'noise'

"Noise" refers to any disturbance that masks or disrupts a signal being sent by light through an optical fiber. One such disturbance is caused by phonons - quantized acoustic or sound waves that occur at atomic and subatomic levels, in this case in the glass of an optical fiber.

Phonons cause a beam of light to "scatter" off the acoustic waves, creating splinter beams of different frequencies, or colors, that can interfere with, and reduce the energy of, the main beam. While some forms of scattering can be useful for specific applications, it interferes with quantum applications and even basic optical communications.

Noise can be reduced by cooling the fibers to extremely low, cryogenic temperatures, but that's "very expensive and complicated," Renninger says. Another approach is to attempt to use complicated error-correcting algorithms to correct for noise.

The anti-resonant hollow-core fiber, however, represents a straightforward solution that works even at room temperatures. Created by co-author Rodrigo Amezcua Correa and other researchers at CREOL, the College of Optics and Photonics at the University of Central Florida, the fiber features a unique arrangement of seven hollow capillaries arranged around a hollow core inside the fiber.

This results in minimal overlap between the fiber's outer layer of glass and the light traveling through the core, eliminating interference from acoustic phonons emanating from the glass.

Tests by Renninger's lab showed that the arrangement is 10 times more effective at reducing noise than other hollow fiber designs. "The little noise that's left is caused by acoustic waves in the air inside the fiber, so if you were to evacuate the air it would be another 100 times more effective," Renninger says. "You would have incredibly low noise".

"If the fate of the world depended on reducing acoustic noise in optical fibers, this is the one you would want to use."
-end-
The study was supported with funding from the Army Research Office and Renninger's National Science Foundation CAREER award.

Other coauthors are Wendao Xu, a graduate research associate in Renninger's lab, and Enrique Antonio-Lopez, a research scientist at CREOL.

University of Rochester

Related Glass Articles from Brightsurf:

Glass tables can cause life-threatening injuries
Faulty glass in tables can cause life-threatening injuries, according to a Rutgers study, which provides evidence that stricter federal regulations are needed to protect consumers.

The nature of glass-forming liquids is more clear
Researchers from The University of Tokyo have found that attractive and repulsive interactions between particles are both essential to form structural order that controls the dynamics of glass-forming liquids.

Experimental study of how 'metallic glass' forms challenges paradigm in glass research
Unlike in a crystal, the atoms in a metallic glass are not ordered when the liquid solidifies.

On-demand glass is right around the corner
A research group coordinated by physicists of the University of Trento was able to probe internal stress in colloidal glasses, a crucial step to control the mechanical properties of glasses.

Glass from a 3D printer
ETH researchers used a 3D printing process to produce complex and highly porous glass objects.

Making glass more clear
Northwestern University researchers have developed an algorithm that makes it possible to design glassy materials with dynamic properties and predict their continually changing behaviors.

Researchers use 3D printer to print glass
For the first time, researchers have successfully 3D printed chalcogenide glass, a unique material used to make optical components that operate at mid-infrared wavelengths.

New family of glass good for lenses
A new composition of germanosilicate glass created by adding zinc oxide has properties good for lens applications, according to Penn State researchers.

In-depth insights into glass corrosion
Silicate glass has many applications, including the use as a nuclear waste form to immobilize radioactive elements from spent fuel.

New research questions the 'Glass Cliff' and corroborates the persistent 'Glass Ceiling'
Are women more likely to be appointed to leadership positions in crisis situations when companies are struggling with declining profits?

Read More: Glass News and Glass Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.