Researchers show why active mountains don't get taller

September 19, 2002

Active mountain ranges like the Olympic Mountains, Taiwan Central Range or the Southern Alps are still growing, but they are not getting any taller. River cutting and erosion keep the heights and widths of uplifted mountain ranges in a steady state according to an international team of geoscientists.

"These mountains grew to 2.5 to 3 miles high over the past few million years and then they stopped increasing," says Dr. Rudy L. Slingerland, professor of geology and head of Penn State's geosciences department. "We assumed that various erosional forces were compensating for the constant uplift of the mountains, but few observations have been available to validate this assumption."

Mountain ranges form near the border of two tectonic plates. When one plate slides beneath the other, or subducts, a veneer of rocks on the subducted plate is scraped off and piles up to form the mountains. Even though tectonic plates subduct for tens of millions of years, mountain ranges usually stay between 2.5 and 3 miles high and about 75 to 150 miles wide. This is because the slopes become steeper as the mountains grow in elevation and more material erodes away via landslides, river cutting and other forms of erosion. The higher and steeper the mountains, the greater the slope and the more material is transported away to the oceans.

"The process of river erosion redistributes the mass of the mountain and has significant influences on maintaining steady-state mountain heights and widths," says Slingerland.

Slingerland, working with N. Hovius, a former Penn State postdoctoral fellow now at Cambridge University; K. Hartshorn, graduate student; and W. B. Dade, research scientist, also at Cambridge University, looked at the LiWu River in the East Central Range of Taiwan.

The researchers monitored the site of the only water gauging station on the LiWu River. The station was established for a small, Japanese built, hydroelectric station 2.5 miles downstream. They report the results of nearly two years of monitoring in today's (Sept. 20) issue of Science.

The LiWu River originates at 11,500 feet above sea level and drains an area of about 230 square miles of mostly quartzite and schist rocks. The researchers note that the area has a high rate of tectonic uplift, about 2 to 4 miles per million years and approximately 110 million tons of sediment move through the river each year. This is about a tenth of all the sediment that goes into the sea worldwide.

"We measured the elevation of the riverbed to plus or minus two one-hundredths of an inch," says Slingerland. "This really fine measurement allowed us to see how rapidly the water was eroding the riverbed."

The quartzite components of the riverbed eroded about a third of an inch over two wet seasons and the schist eroded a little under a quarter of an inch.

"It just so happened that the first season we were monitoring was quite dry, then in the second season there was a super typhoon, Supertyphoon Bilis," says Slingerland. "We found the wear rates differed between the two years."

During the typhoon year, there was some wear in the river bottom, but most of the wear was higher on the valley walls and in the corners, widening the river's course. During the non-supertyphoon year, when rainfall was relatively frequent but of moderate intensity, wear occurred lower in the river valley.

"Looking at the numbers, even for only a few years, indicates that the down cutting rate fairly closely matches the rate at which rocks move up," says the Penn State researcher.

Knowing that the river cutting balances the continuous mountain up lifting answered the question of the rate of river cutting, but how that cutting takes place was another question the researchers investigated.

"While violent water discharge does pluck blocks of rocks from the riverbeds, it appears to be the abrasion by suspended particles that does most of the down cutting," says Slingerland. "It is like sandblasting a stone building. The tiny particles wear away the surface."
-end-
This research was supported by the National Science Foundation.

Penn State

Related Erosion Articles from Brightsurf:

Siberia's permafrost erosion has been worsening for years
The Arctic is warming faster than any other region on the planet.

Worldwide loss of phosphorus due to soil erosion quantified for the first time
Phosphorus is essential for agriculture, yet this important plant nutrient is increasingly being lost from soils around the world.

Climate change and land use are accelerating soil erosion by water
Soil loss due to water runoff could increase greatly around the world over the next 50 years due to climate change and intensive land cultivation.

Massive seagrass die-off leads to widespread erosion in a California estuary
The large-scale loss of eelgrass in a major California estuary -- Morro Bay -- may be causing widespread erosion.

Atomic force microscopy reveals nanoscale dental erosion from beverages
KAIST researchers used atomic force microscopy to quantitatively evaluate how acidic and sugary drinks affect human tooth enamel at the nanoscale level.

Erosion process studies in the Volga Region assist in land use planning
Dr. Gusarov (Paleoclimatology, Paleoecology and Paleomagnetism Lab) has been working on erosion processes for two decades as a part of various teams.

Unsustainable soil erosion in parts of UK
New research demonstrates unsustainable levels of soil erosion in the UK.

Plant root hairs key to reducing soil erosion
The tiny hairs found on plant roots play a pivotal role in helping reduce soil erosion, a new study has found.

Deforestation, erosion exacerbate mercury spikes near Peruvian gold mining
Scientists from Duke University have developed a model that can predict the amount of mercury being released into a local ecosystem from deforestation.

What's driving erosion worldwide?
ETH Zurich researchers are reexamining the causes of soil erosion around the world -- and have found that countries themselves have a surprisingly strong influence on their soil.

Read More: Erosion News and Erosion Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.