Researchers now on road to isolating skin stem cells

September 19, 2003

Researchers at the San Francisco VA Medical Center (SFVAMC) have taken the first major step toward isolating adult stem cells from mouse skin, having developed a test that confirms the presence and number of stem cells in a given amount of tissue. Until now, such a technique has only existed for isolating adult stem cells found in blood.

"This assay has opened up a whole new avenue of research," said Ruby Ghadially, MD, SFVAMC staff physician and UCSF associate professor of dermatology. "If you can determine how many stem cells you have, then you can identify distinguishing characteristics that will allow you to isolate the cells. We could then potentially use these cells as effective carrier cells for gene therapy and, someday, use them to produce new stem cells for treating burns and wounds in the skin," Ghadially said.

The study was published online September 17 in the Proceedings of the National Academy of Sciences's online early edition, and will appear in the print version of the journal September 30.

Stem cells are the body's unspecialized cells, which give rise to the specialized cell types that make up an organism. Embryonic stem cells emerge in the first days of an embryo's development, and have the potential to differentiate, or specialize, into each of the 200 types of tissue in the body. Adult stem cells are unspecialized cells found in specialized tissues throughout the body, including bone marrow, skin and the pancreas, among others. They can reproduce themselves as well as give rise to all the cell types of the tissue in which they are found. Scientists are working to take advantage of the natural properties of stem cells in order to develop ways of repairing or replacing the cells of damaged tissues and organs.

Knowing the number of stem cells allows researchers to look for cell-surface molecules, or markers, that distinguish stem cells from specialized cells. This allows researchers to isolate stem cells from specialized cells and investigate ways of taking advantage of their ability to make new specialized cells. For example, stem cells isolated from the blood are now being used to treat cancer patients whose blood cells are damaged by radiation treatment or chemotherapy. Stem cells taken from either the patient before treatment or from a donor are transplanted into the patient following treatment where they make new blood cells.

Using the new assay for skin stem cells, the researchers found that the bottom layer of skin, called the basal epidermis, had the same number of stem cells as found in bone marrow: about one in every 10,000 cells. The assay relies on the same concepts as those used to quantify stem cells in blood. Researchers placed skin cells from two donor mice onto a patch of denuded skin of a third mouse. The cells from one donor were labeled with green fluorescent protein (GFP). The differentiated cells that make up the layers of the skin died off as expected, while stem cells, which are permanent, produced new differentiated cells that replaced the ones that died. So, to confirm the presence of stem cells in their test mice, researchers looked for those cells that still glowed green after a month.

To estimate the number of cells in basal epidermis, researchers kept the number of cells of the non-labeled donor constant over a number of host mice. But, they varied the number of the GFP cells to see how small a sample they could add before they saw no green stem cells after a month's time. This process, called limiting dilution, gave them the ratio of stem cells to differentiated cells in their GFP samples.

According to Ghadially, research using stem cells from the blood is 20 years ahead of other stem cell research, largely because researchers have a similar assay they use to quantify the number of stem cells in a given sample. "We know a lot about stem cells in the blood and that's because we can get our hands on them. Now we can determine which markers distinguish stem cells from differentiated skin cells, which will eventually allow us to isolate skin stem cells," Ghadially said.

The eventual isolation of skin stem cells, Ghadially said, promises to allow the treatment of wounds, including burns, through transplantation of stem cells directly onto the damaged area where new skin will grow. It may take decades, but Ghadially predicts researchers also will be able to prompt skin stem cells to produce more stem cells in the same way researchers have been able to do with stem cells taken from the blood. Also, isolating epidermal stem cells will allow skin researchers to better understand the process by which skin cells differentiate and, since skin cancer likely originates in stem cells, better understand--and maybe someday better treat--skin cancer.

Additional authors include Tracy E. Schneider, BS, Chantal Barland, MD, and April M. Alex, MS, of the UCSF Department of Dermatology; Ying Lu, PhD, statistician and James E. Cleaver, PhD, researcher of the UCSF Comprehensive Cancer Center; H. Jeffrey Lawrence, MD, SFVAMC staff physician and UCSF professor of medicine; and Maria L. Mancianti, MD, of the Department of Pathology, Alta Bates Medical Center, Berkeley, CA.
-end-
This research was supported by two grants to Ghadially from the National Institutes of Health and a Department of Veterans Affairs Merit Review Program Award.

University of California - San Francisco

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.