Nonlinear physics bridges thoughts to sounds in birdsong

September 19, 2017

WASHINGTON, D.C., September 19, 2017 -- The beautiful sound of birdsongs emerging from the trees is a wonderful example of how much nature can still teach us, even as much about their origins are still mysterious to us. About 40 percent of bird species learn to vocalize when they are exposed to a tutor, a behavior of interest to many neurologists and neurobiologists. The other 60 percent can vocalize instinctually in isolation. The variety across species, and the relationship between the nervous system and biomechanics makes birdsong production a complex process to unravel and understand.

Physicist Gabriel Mindlin, from the University of Buenos Aires in Argentina, has been looking at the phenomena from what is one of the most unifying and potentially enlightening perspectives of the issue: the dynamical physics of birds' vocal organs. In his recent, in-depth review of the topic, published this week in the journal Chaos, from AIP Publishing, he explores the role of fundamental physics properties in the acoustic complexity of birdsong, and the relationship they have with neural instructions for their production.

"My main question was: What part of this complex phenomenon, this complex behavior, is due to the physics and the biomechanisms that [are] involved, and how much is due to the particular neural structures that are controlling it," Mindlin said. "My background is nonlinear dynamics; therefore, I was prepared to accept that many of the complexities of the behavior could be associated to the fact that the vocal device was a nonlinear device and therefore even with simple parameters, you could describe complex behavior."

Building on the experimental findings from direct observations -- including a study that used a miniature transducer system mounted on a bird's back to measure changes in its lung's air sac pressure -- Mindlin looks at the key structural parameters involved the song production.

"The songbirds share main features in the way in which they produce their songs, so you can build a unifying model and most of the acoustical differences that they can achieve are due to the region in parameter space where they operate," Mindlin said. "There are some universal features that are preserved across species."

From the direct evidence of the acoustics and biomechanics involved, Mindlin and his colleagues built models of this parameter space to describe the precise nonlinear dynamic properties governing the process. Cautious of potential skepticism from the biological community, he also tested the models by recreating songs and using them to study bird reactions in a similar manner to older studies that used actual song recordings.

Using synthetic birdsongs, Mindlin and his collaborators were able to recreate much of the neural response in zebra finches that was measured when using recordings of their real songs. These neural signatures, and how they relate to the sound production, offer a lot of insight to the neurobiology of language production as well as, perhaps surprisingly, to more purely fundamental physics.

"The interesting thing is that it opens many question for the physics community, how to go from a neuron to the collective activities of muscle fibers and the microscopic control of the biomechanics. It's an open question for out of equilibrium statistical mechanics," Mindlin said.
-end-
The article, "Nonlinear dynamics in the study of birdsong," is authored by Gabriel B. Mindlin. The article will appear in Chaos Sept. 18, 2017 [DOI: 10.1063/1.4986932]. After that date, it can be accessed at http://aip.scitation.org/doi/full/10.1063/1.4986932.

ABOUT THE JOURNAL

Chaos is devoted to increasing the understanding of nonlinear phenomena in all disciplines and describing their manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See http://chaos.aip.org.

American Institute of Physics

Related Behavior Articles from Brightsurf:

Variety in the migratory behavior of blackcaps
The birds have variable migration strategies.

Fishing for a theory of emergent behavior
Researchers at the University of Tsukuba quantified the collective action of small schools of fish using information theory.

How synaptic changes translate to behavior changes
Learning changes behavior by altering many connections between brain cells in a variety of ways all at the same time, according to a study of sea slugs recently published in JNeurosci.

I won't have what he's having: The brain and socially motivated behavior
Monkeys devalue rewards when they anticipate that another monkey will get them instead.

Unlocking animal behavior through motion
Using physics to study different types of animal motion, such as burrowing worms or flying flocks, can reveal how animals behave in different settings.

AI to help monitor behavior
Algorithms based on artificial intelligence do better at supporting educational and clinical decision-making, according to a new study.

Increasing opportunities for sustainable behavior
To mitigate climate change and safeguard ecosystems, we need to make drastic changes in our consumption and transport behaviors.

Predicting a protein's behavior from its appearance
Researchers at EPFL have developed a new way to predict a protein's interactions with other proteins and biomolecules, and its biochemical activity, merely by observing its surface.

Spirituality affects the behavior of mortgagers
According to Olga Miroshnichenko, a Sc.D in Economics, and a Professor at the Department of Economics and Finance, Tyumen State University, morals affect the thinking of mortgage payers and help them avoid past due payments.

Asking if behavior can be changed on climate crisis
One of the more complex problems facing social psychologists today is whether any intervention can move people to change their behavior about climate change and protecting the environment for the sake of future generations.

Read More: Behavior News and Behavior Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.