Complex life evolved out of the chance coupling of small molecules

September 19, 2017

Complex life, as we know it, started completely by chance, with small strands of molecules linking up, which eventually would have given them the ability to replicate themselves.

In this world, billions of years ago, nothing existed that we would recognise today as living. The world contained only lifeless molecules that formed spontaneously through the natural chemical and physical processes on Earth.

However, the moment that small molecules connected and formed larger molecules with the ability to replicate themselves, life started to evolve.

"Life was a chance event, there is no doubt about that," says Dr Pierre Durand from the Evolution of Complexity Laboratory in the Evolutionary Studies Institute at Wits University, who led a project to find out how exactly these molecules linked up with each other. Their results are published today in the journal Royal Society Open Science, in a paper entitled "Molecular trade-offs in RNA ligases affected the modular emergence of complex ribozymes at the origin of life".

Very simple ribonucleic acid (RNA) molecules (compounds similar to Deoxyribonucleic acid (DNA)) can join other RNA molecules to themselves though a chemical reaction called ligation. The random joining together of different pieces or RNA could give rise to a group of molecules able to produce copies of themselves and so kick start the process of life. 

While the process that eventually led to the evolution of life took place over a long period of time, and involved a number of steps, Wits PhD student Nisha Dhar and Durand have uncovered how one of these crucial steps may have occurred.

They have demonstrated how small non-living molecules may have given rise to larger molecules that were capable of reproducing themselves. This path to self-replicating molecules was a key event for life to take hold. 

"Something needed to happen for these small molecules to interact and form longer, more complex molecules and that happened completely by chance," says Durand.

These smaller RNA molecules possessed enzyme activity that allowed ligation, which, in turn allowed them to link up with other small molecules thereby forming larger molecules.

"The small molecules are very promiscuous and can join other pieces to themselves. What was interesting was that these smaller molecules were smaller than we had originally thought," says Durand.

The smallest molecule that exhibited self-ligation activity was a 40-nucleotide RNA. It also demonstrated the greatest functional flexibility as it was more general in the kinds of substrates it ligated to itself although its catalytic efficiency was the lowest.

"Something needed to happen for molecules to reproduce, and thereby starting life as we know it. That something turned out to be the simple ligation of a set of small molecules, billions of years ago," says Durand.

University of the Witwatersrand

Related RNA Articles from Brightsurf:

A new RNA catalyst from the lab
On the track of evolution: a catalytically active RNA molecule that specifically attaches methyl groups to other RNAs - a research group from the University of Würzburg reports on this new discovery in Nature.

Small RNA as a central player in infections
The most important pathogenicity factors of the gastric pathogen Helicobacter pylori are centrally regulated by a small RNA molecule, NikS.

RNA as a future cure for hereditary diseases
ETH Zurich scientists have developed an RNA molecule that can be used in bone marrow cells to correct genetic errors that affect protein production.

Bringing RNA into genomics
By studying RNA-binding proteins, a research consortium known as ENCODE (Encyclopedia of DNA Elements) has identified genomic sites that appear to code for RNA molecules that influence gene expression.

RNA key in helping stem cells know what to become
If every cell has the same genetic blueprint, why does an eye cell look and act so differently than a brain cell or skin cell?

RNA structures by the thousands
Researchers from Bochum and Münster have developed a new method to determine the structures of all RNA molecules in a bacterial cell at once.

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.

Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.

New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.

Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.

Read More: RNA News and RNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to