Researchers take on atmospheric effects of Arctic snowmelt

September 19, 2017

Researchers at the University of Alaska Fairbanks' Geophysical Institute are exploring the changing chemistry of the Arctic's atmosphere to help answer the question of what happens as snow and ice begin to melt.

The research, led by chemistry professor William R. Simpson, is concerned with the Arctic's reactive bromine season, which is the period of time when bromine is consuming ozone, producing bromine monoxide and oxidizing mercury.

Reactive bromine events occur during Arctic springtime, when temperatures are low and sea ice is snow-covered. As springtime transitions to summer, with temperatures climbing above freezing and snowpack melting, these events cease and atmospheric bromine quantities become low.

"Atmosphere chemistry really changes when snow melts," said Simpson. "And earlier melt is changing what is happening in the atmosphere."

While scientists studying the Arctic typically have a narrow time window to gather information, Simpson's research group used a year-round data set that included buoy-based observations in the Arctic Ocean.

Peter K. Peterson, one of Simpson's student researchers, noted a predictive application of the research: An increased understanding of bromine reactivity could help scientists figure out how "the atmospheric composition in the Arctic might respond to rapidly changing sea ice conditions."

"Monitoring the seasonal end date each year could give us an indication of climate change as well, since it correlates to temperature change," added Justine A. Burd, the student researcher who processed the data and research correlations. "Is the bromine season ending earlier each year, staying approximately the same, or getting longer?"

In Utqia?vik, the melt season has lengthened approximately eight days over the past 60 years, while in the pan-Arctic region the season has lengthened approximately five days per decade. As the snowmelt season lengthens, or as Arctic springtime is reduced, the bromine season becomes increasingly shorter.

"Knowing how snow and ice affect the atmosphere is becoming even more important considering the changing Arctic ice pack and changing Arctic temperatures," said Simpson. "This narrow work is one part of a big, broad question: what happens when snow starts to melt?"
-end-
A paper co-authored by Burd, Peterson and Simpson that includes the group's methodology and findings has been published by the American Geophysical Union.

University of Alaska Fairbanks

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.