Nav: Home

Magnetic field milestone

September 19, 2018

Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced. The field was sustained for longer than any previous field of a similar strength. This research could lead to powerful investigative tools for material scientists and may have applications in fusion power generation.

Magnetic fields are everywhere. From particle smashers to the humble compass, our capacity to understand and control these fields crafted much of the modern world. The ability to create stronger fields advances many areas of science and engineering. UTokyo physicist Shojiro Takeyama and his team created a large sophisticated device in a purpose-built lab, capable of producing the strongest controllable magnetic field ever using a method known as electromagnetic flux compression.

"Decades of work, dozens of iterations and a long line of researchers who came before me all contributed towards our achievement," said Professor Takeyama. "I felt humbled when I was personally congratulated by directors of magnetic field research institutions around the world."

But what is so interesting about this particular magnetic field?

At 1,200 teslas - not the brand of electric cars, but the unit of magnetic field strength - the generated field dwarfs almost any artificial magnetic field ever recorded; however, it's not the strongest overall. In 2001, physicists in Russia produced a field of 2,800 teslas, but their explosive method literally blew up their equipment and the uncontrollable field could not be tamed. Lasers can also create powerful magnetic fields, but in experiments they only last a matter of nanoseconds.

The magnetic field created by Takeyama's team lasts thousands of times longer, around 100 microseconds, about one-thousandth of the time it takes to blink. It's possible to create longer-lasting fields, but these are only in the region of hundreds of teslas. The goal to surpass 1,000 teslas was not just a race for the sake of it, that figure represents a significant milestone.

"With magnetic fields above 1,000 Teslas, you open up some interesting possibilities," says Takeyama. "You can observe the motion of electrons outside the material environments they are normally within. So we can study them in a whole new light and explore new kinds of electronic devices. This research could also be useful to those working on fusion power generation."

This is an important point, as many believe fusion power is the most promising way to provide clean energy for future generations. "One way to produce fusion power is to confine plasma - a sea of charged particles - in a large ring called a tokamak in order to extract energy from it," explains Takeyama. "This requires a strong magnetic field in the order of thousands of teslas for a duration of several microseconds. This is tantalizingly similar to what our device can produce."
-end-
Journal article

D. Nakamura, A. Ikeda, H. Sawabe, Y. H. Matsuda, and S. Takeyama
"Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression"
Review of Scientific Instruments
DOI - 10.1063/1.5044557
https://aip.scitation.org/doi/full/10.1063/1.5044557

Related links

The Institute for Solid State Physics, The University of Tokyo http://www.issp.u-tokyo.ac.jp/index_en.html

Takeyama Laboratory http://takeyama.issp.u-tokyo.ac.jp/indexe.html

Research contact

Shojiro Takeyama - takeyama@issp.u-tokyo.ac.jp

Takeyama Laboratory, The Institute for Solid State Physics, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, JAPAN

Public relations contacts

Madoka Mochida - press@issp.u-tokyo.ac.jp
Institute for Solid State Physics, The University of Tokyo,
Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581 JAPAN

Rohan Mehra - press-releases.adm@mail.u-tokyo.ac.jp
Division for Strategic Public Relations, The University of Tokyo,
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, JAPAN

About the University of Tokyo

The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

University of Tokyo

Related Magnetic Field Articles:

Earth's last magnetic field reversal took far longer than once thought
Every several hundred thousand years or so, Earth's magnetic field dramatically shifts and reverses its polarity.
A new rare metals alloy can change shape in the magnetic field
Scientists developed multifunctional metal alloys that emit and absorb heat at the same time and change their size and volume under the influence of a magnetic field.
Physicists studied the influence of magnetic field on thin film structures
A team of scientists from Immanuel Kant Baltic Federal University together with their colleagues from Russia, Japan, and Australia studied the influence of inhomogeneity of magnetic field applied during the fabrication process of thin-film structures made from nickel-iron and iridium-manganese alloys, on their properties.
'Magnetic topological insulator' makes its own magnetic field
A team of U.S. and Korean physicists has found the first evidence of a two-dimensional material that can become a magnetic topological insulator even when it is not placed in a magnetic field.
Scientists develop a new way to remotely measure Earth's magnetic field
By zapping a layer of meteor residue in the atmosphere with ground-based lasers, scientists in the US, Canada and Europe get a new view of Earth's magnetic field.
Magnetic field milestone
Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced.
New world record magnetic field
Scientists at the University of Tokyo have recorded the largest magnetic field ever generated indoors -- a whopping 1,200 tesla, as measured in the standard units of magnetic field strength.
Researchers discover link between magnetic field strength and temperature
Researchers recently discovered that the strength of the magnetic field required to elicit a particular quantum mechanical process corresponds to the temperature of the material.
Astronomers observe the magnetic field of the remains of supernova 1987A
For the first time, astronomers have directly observed the magnetism in one of astronomy's most studied objects: the remains of Supernova 1987A (SN 1987A), a dying star that appeared in our skies over thirty years ago.
Watch: Insects also migrate using the Earth's magnetic field
A major international study led by researchers from Lund University in Sweden has proven for the first time that certain nocturnally migrating insects can explore and navigate using the Earth's magnetic field.
More Magnetic Field News and Magnetic Field Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.