Long lost human relative unveiled

September 19, 2019

(Jerusalem, September 19, 2019)--If you could travel back in time to 100,000 years ago, you'd find yourself living among several different groups of humans, including Modern Humans (those anatomically similar to us), Neanderthals, and Denisovans. We know quite a bit about Neanderthals, thanks to numerous remains found across Europe and Asia. But exactly what our Denisovan relatives might have looked like had been anyone's guess for a simple reason: the entire collection of Denisovan remains includes three teeth, a pinky bone and a lower jaw. Now, as reported in the scientific journal Cell, a team led by Hebrew University of Jerusalem (HUJI) researchers Professor Liran Carmel and Dr. David Gokhman (currently a postdoc at Stanford) has produced reconstructions of these long-lost relatives based on patterns of methylation (chemical changes) in their ancient DNA.

"We provide the first reconstruction of the skeletal anatomy of Denisovans," says lead author Carmel of HUJI's Institute of Life Sciences. "In many ways, Denisovans resembled Neanderthals but in some traits they resembled us and in others they were unique."

Denisovan remains were first discovered in 2008 and have fascinated human evolution researchers ever since. They lived in Siberia and Eastern Asia, and went extinct approximately 50,000 years ago. We don't yet know why. That said, up to 6% of present-day Melanesians and Aboriginal Australians contain Denisovan DNA. Further, Denisovan DNA likely contributed to modern Tibetans' ability to live in high altitudes and to Inuits' ability to withstand freezing temperatures.

Overall, Carmel and his team identified 56 anatomical features in which Denisovans differ from modern humans and/or Neanderthals, 34 of them in the skull. For example, the Denisovan's skull was probably wider than that of modern humans' or Neanderthals'. They likely also had a longer dental arch and no chin.

The researchers came to these conclusions after three years of intense work studying DNA methylation maps. DNA methylation refers to chemical modifications that affect a gene's activity but not its underlying DNA sequence. The researchers first compared DNA methylation patterns among the three human groups to find regions in the genome that were differentially methylated. Next, they looked for evidence about what those differences might mean for anatomical features--based on what's known about human disorders in which those same genes lose their function.

"In doing so, we got a prediction as to what skeletal parts are affected by differential regulation of each gene and in what direction that skeletal part would change--for example, a longer or shorter femur bone," Dr. Gokhman explained.

To test this ground-breaking method, the researchers applied it to two species whose anatomy is known: the Neanderthal and the chimpanzee. They found that roughly 85% of their trait reconstructions were accurate in predicting which traits diverged and in which direction they diverged. Then, they applied this method to the Denisovan and were able to produce the first reconstructed anatomical profile of the mysterious Denisovan.

As for the accuracy of their Denisovan profile, Carmel shared, "One of the most exciting moments happened a few weeks after we sent our paper to peer-review. Scientists had discovered a Denisovan jawbone! We quickly compared this bone to our predictions and found that it matched perfectly. Without even planning on it, we received independent confirmation of our ability to reconstruct whole anatomical profiles using DNA that we extracted from a single fingertip."

In their Cell paper, Carmel and his colleagues predict many Denisovan traits that resemble Neanderthals', such as a sloping forehead, long face and large pelvis, and others that are unique among humans, for example, a large dental arch and very wide skull. Do these traits shed light on the Denisovan lifestyle? Could they explain how Denisovans survived the extreme cold of Siberia?

"There is still a long way to go to answer these questions but our study sheds light on how Denisovans adapted to their environment and highlights traits that are unique to modern humans and which separate us from these other, now extinct, human groups," Carmel concluded.
-end-
Professors Eran Meshorer from the Hebrew University, Yoel Rak from Tel Aviv University, and Tomas Marques-Bonet from Barcelona's Institute of Evolutionary Biology (UPF-CSIC) contributed to this research.

Link to Photos, Diagrams and Video: https://drive.google.com/open?id=1DRGRoGPylOyR-F4zqA0KQpayiU5C4VpZ

The Hebrew University of Jerusalem

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.