Nav: Home

Biologists untangle growth and defense in maize, define key antibiotic pathways

September 19, 2019

In order to meet the demands of growing human populations, agricultural production must double within the next 30 years. Yet the health of today's crops and the promise of their yield face a rising slate of threats--from pests to chaotic weather events--leading to an urgent need to identify effective, natural plant defense strategies.

Biologists have access to a wealth of genomic and biochemical data, but rapidly deciphering entire biochemical pathways that protect key crops of global significance remains a significant challenge. Scientists are peeling away at the layers of immunity in maize, a staple for diets around the world, to determine if there are key genes that enable surprisingly diverse antibiotic cocktails that can be produced as defensive blends against numerous disease agents.

Now, a systematic and combined approach to identifying such genes in crop defense has been developed by Yezhang Ding, Alisa Huffaker and Eric Schmelz of the University of California San Diego and their colleagues and is described in Nature Plants.

"We need to know which crop defense mechanisms are effective and what we can do sustain or further improve them," said Schmelz. "Coauthors and collaborators in China are already taking some of the maize genes we characterized and are using them to significantly improve disease resistance in rice."

Historically, defining a complete new biochemical pathway in crops has required stepwise progress and often the better part of an entire research career. In the new study, the UC San Diego biologists describe how they combined an array of scientific approaches to clearly define six genes that encode enzymes responsible for the production of key maize antibiotics known to control disease resistance.

Maize plants lacking small molecule antibiotic defenses, derived from a skeleton of 20 carbon atoms known as diterpenoids, commonly suffer dramatic increases in fungal disease susceptibility.

"Most people appreciate that pine trees are heavily protected by sticky acid resins that kill or deter a majority of microbes and insects," said Schmelz. "We describe a complete maize biosynthetic pathway that also makes acid resins on-demand at the site of fungal attack. Interestingly, almost the entire pathway is derived from evolutionarily recent gene duplications from diverse hormone pathways related to plant growth and human testosterone metabolism."

One of the evolutionary steps was a comparatively recent gene duplication three million years ago from the hormone pathway responsible for plant growth called gibberellins. In a step not clearly borrowed from hormone biosynthesis, two highly promiscuous oxidative enzymes (with broad substrate and product specificity) termed cytochrome P450s were characterized to produce unique reactions different from known conifer pathways. In total, the effort leveraged more than 2,000 plant samples, each with 36,861 transcripts, spanning 300 different maize lines to systematically narrow candidates and define a maize pathway for antibiotics effective against fungal pathogens.
-end-
In addition to Ding, Huffaker and Schmelz, coauthors of the paper include Katherine Murphy, graduate students Elly Poretsky and Andrew Sher, along with Evan Saldivar, Mengxi Wu, Zhouxin Shen and Steve Briggs (UC San Diego); Gabriel Castro-Falcon and Chambers Hughes (Scripps Institution of Oceanography, UC San Diego); Sibongile Mafu and Philipp Zerbe (UC Davis); Bing Yang and Si Nian Char (Iowa State University, Ames); Shawn Christensen (Agricultural Research Service, Gainesville, Florida); Qiang Wang (Sichuan Agricultural University); Lexiang Ji and Robert Schmitz (University of Georgia); Karl Kremling and Edward Buckler (Cornell University); and Jorg Bohlmann (University of British Columbia).

University of California - San Diego

Related Maize Articles:

Maize, not metal, key to native settlements' history in NY
New Cornell University research is producing a more accurate historical timeline for the occupation of Native American sites in upstate New York, based on radiocarbon dating of organic materials and statistical modeling.
New aflatoxin biocontrol product lowers contamination of groundnut and maize in Senegal
Recently a team of plant pathologists have developed an aflatoxin biocontrol product, Aflasafe SN01, for use in Senegal, which includes four atoxigenic isolates native to Senegal and distinct from active ingredients used in other biocontrol products in Africa and elsewhere.
A genetic map for maize
Researchers have decoded the genetic map for how maize from tropical environments can be adapted to the temperate US summer growing season.
'Lost crops' could have fed as many as maize
Grown together, newly examined 'lost crops' could have produced enough seed to feed as many indigenous people as traditionally grown maize, according to new research from Washington University in St.
Artificial intelligence and farmer knowledge boost smallholder maize yields
To better deal with climate stress, farmers in Colombia's maize-growing region of Córdoba needed information services that would help them decide what varieties to plant, when they should sow and how they should manage their crops.
Biologists untangle growth and defense in maize, define key antibiotic pathways
Studying the complex layers of immunity in maize, a staple for diets around the world, scientists have identified key genes that enable surprisingly diverse antibiotic cocktails that can be produced as defensive blends against numerous disease agents.
Gene variant in maize ancestor could increase yields in today's densely planted fields
From within the genetic diversity of wild teosinte -- the evolutionary ancestor of modern maize -- valuable traits lay hidden.
Maize-centric diet may have contributed to ancient Maya collapse
Researchers look at the role of diet in the ability of the ancient Maya to withstand periods of severe climatic stress.
Crop yield in maize influenced by unexpected gene 'moonlighting'
Researchers identified a relationship between crop yield in the maize plant and activity of the RAMOSA3 gene.
Ancient Japanese pottery includes an estimated 500 maize weevils
Researchers have discovered an ancient Japanese pottery vessel from the late Jomon period (4500-3300 BP) with an estimated 500 maize weevils incorporated into its design.
More Maize News and Maize Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.